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Introduction 

In his celebrated paper [1] on the elementary theory of finite fields Ax considered 
fields K with the property that every absolutely irreducible variety defined over K 
has K-rational points. These fields have been later called pseudo algebraically closed 
(pac) by Frey [10] and also regularly closed by Ershov [8], and extensively studied 
by Jarden, Ershov, Fried, Wheeler andothers, culminating with the fundamental 
works [7] and [11]. 

The above definition of pac fields can be put into the following equivalent ver- 
sion: K is existentially complete (ec), relative to the customary language of fields, 
into each regular field extension of K. It has been this characterization of pac fields 
which the author extended in [2] to ordered fields. An ordered field (K, ___) is called 
in [2] pseudo real closed (prc) if (K, _<) is ec in every ordered field extension (L, _ )  
with L regular over K. The concept of prc ordered field has also been introduced 

* T h e  p resen t  pape r  is the contents of §1-3,  §9-10  of the r epor t  [4] ear l ier  submi t t ed  as a whole for 
publication in J. Pu re  A p p l .  A l g e b r a .  

The a u t h o r  t hanks  very  much  the referee for suggesting him a be t te r  organization of the paper and 
informing him about Ershov's note [9] announcing certain results which are similar with some resul ts  

proved in §12-13 of [4]. 
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by McKenna in his thesis [14], by analogy with the original algebraic-geometric 
definition of pac fields. 

Recently, Prestel [17] introduced a very inspired concept which extends the con- 
cept of a pac field as well as of a prc ordered field. According to [17], a field K is 
said to be prc if K is ec, relative to field language, in every regular field extension 
of K to which all orders of K extend. 

A system K=(K;PI , . . . ,Pe) ,  where K is a field, e is a positive integer and 
PI, "",Pe are orders of K (identified with the corresponding positive cones), is 
called an e-foM ordered field (e-field). It turns out by [17, Theorem 1.7] that an e- 
field K is ec, relative to the first-order language of e-fields, in every regular e-field 
extension of K iff K is prc, Pi ~ Pj for i :gj and K has exactly e orders. Let us call 
such an e-field K a prc e-field. 

It is well known that the absolute Galois group G(K) of a pac field K is a projec- 
tive profinite group (see [1] for perfect pac fields). It is also known [16], [7, Proposi- 
tion 38], that all projective profinite groups occur as G(K), K a pac field. The main 
goal of the present paper is to prove that the statements above remain true for prc 
e-fields K if we replace the absolute Galois group G(K) by a suitable generalization 
G(K) called the absolute Galois e-structure of the e-field K, and projectivity for pro- 
finite groups by projectivity for the so called profinite e-structures. 

Theorem I. Let  K be a prc e-field. Then its absolute Galois e-structure G(K) is a pro- 
jective pro finite e-structure. 

Theorem II. The necessary and sufficient condition for  a pro finite e-structure G to 
be realized as the absolute Galois e-structure over some prc e-field is that G is 
projective. 

In order to prove the theorems above we introduce and investigate in Sections 1-4 
some group-theoretic objects called e-structures. Some basic facts concerning the 
model theory of profinite e-structures are developed in Sections 2,3 on the line of 
the cologic for profinite groups from [7]. The projective profinite e-structures are 
characterized in Section 4. 

Section 5 answers the question: what is the appropriate extension to the theory 
of e-fields of the basic concept of Galois group from the field theory? [appropriate 
in the sense that it must reflect the Galois group structure as well as the relation be- 
tween this one and the orders of a given e-field]. The answer to this question is sug- 
gested by the concept of order-pair introduced in [13]. It turns out that the suitable 
gr0up-theoretic concept for e-fields is the concept of profinite e-structure introduc- 
ed in Section 1. To each e-field K we naturally assign a profinite e-structure G(K), 
called the absolute Galois e-structure of K, in such a way that the elementary 
statements about G(K) are interpretable in the first-order language of K. 

Finally. the proofs of the main results stated above are given in Section 6. 
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1. Profinite e-structures 

1.1. Let us fix a natural number e. By an e-structure we mean a system G =  

(G; X1, ..., Xe), where G is a group and the Xi's are non-empty G-sets satisfying 
the next conditions: 

(i) The actions Xi ×G--*Xi: (x ,O~x ~ are transitive, i.e. the Xi's are G-orbits. 
(ii) For x e X i ,  i=  1, ..., e, the invariant subgroup Inv(x)= { r e  G [x~=x} is cyclic 

of order 2. 
e 

If x e ~i= 1 Xi, denote by a(x) the involution of G which generates Inv(x). 
Given an e-structure G, we usually denote by G the underlying group of G and 

by Xi(G), i = 1,..., e, the corresponding G-sets. 
A morphism of e-structures from G to H is an (e+ 1)-tuple ~0=(~0°,¢~,...,¢e), 

where ~0 ° : G--,H is a group morphism and ~0 i : Xi(G)~Xi(H),  i=  1, ..., e, are maps 
subject to the following conditions: 

(i) ~oi(xZ)=~oi(x) ~°°(r) f o r  x E X i ( G ) ,  reG.  
(ii) ¢°(a(x))=a(~oi(x)) for xeXi (G) .  
Usually we denote by the same letter, say ~0, the maps (po, ~0~, ..., ~0e defining a 

morphism of e-structures. 

Call ~o : G ~ t t  a mono (epi) if q~0 : G ~ H  is injective (surjective). 
A sub-e-structure of G is an e-structure H, where H is a subgroup of G and 

Xi(l t)  is a subset of Xi(G), i =  1, ..., e, subject to 
(i) There is xieXi(G) such that a(xi)eH, i= 1, . . . ,e.  

(ii) X i ( H ) = { x [ [ r e H  } with xi as above, and the action of H on X/(H) is in- 
duced by the action of G on X/(G), i =  1,..., e. 

A quotient e-structure of G is an e-structure E where E = G / N  for some normal 
g 

subgroup N of G with a(x) ~ N for x e (-Ji= 1 Xi(G),  Xi(E)  = X i ( G ) / N  is the quotient 
set w.r.t, the next equivalence relation induced by N: 

x - x '  ~ ( '~treN)x '=x ~, 

for x, x 'eXi(G),  i=  1, ..., e, and the actions of E on the Xi(E)'s are induced by the 
actions of G on the Xi(G)'s. 

If ~0:G---,H is a morphism of e-structures, then the image ~o(G)=(~0°(G); 
¢pl(x 1 (G)), . . . ,  ¢pe(Xe(G)) ) is a sub-e-structure of H and q~(G)= G/Ker  ~o °. 

Let ¢p : G ~ H ,  ~o': G ' - , H  be morphisms of e-structures and assume that the sets 
Xi(G) ×xi(n) Xi(G'), i = 1,..., e, are non-empty. Then 

G ×H G ' =  ( a  ×H G' ;  X 1 (G) ×X,(H) X1 (G'), ..., Xe(G ) ×Se(H ) Xe(Gt)) 

with the canonical morphisms p :  G XH G ' ~ G ,  p ' :  G ×  H G ' ~ H '  is a pullback of 
the pair (¢o, ~0'). 

An e-structure G is called finite (profinite) if the underlying group G is finite (pro- 
finite). By morphisms, monos, epis of  profinite e-structures we understand con- 
tinuous morphisms, monos, epis. By a sub-e-structure H o f  a profinite e-structure 
G we mean a sub-e-structure of G for which H is a closed subgroup of G. 
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The simplest example of e-structure denoted by ~'2 has Z/2Z as underlying group 
which acts trivially on the singletons Xi(Z2)= {*), i = 1,..., e. Z2 has no proper sub- 
e-structures and quotient e-structures. 

1.2. Denote by e-FIN (e-PROFIN) the category of finite (profinite) e-structures, let 
e-FINE (e-PROFINE) the subcategory of e-FIN (e-PROFIN) with the same objects, 
but only with epis. 

Now we extend the duality for profinite groups from [7, §2] to profinite e- 
structures. 

Definition. A (directed) projective system (of finite e-structures) is a contravariant 
functor ~ from a directed non-empty partial ordered set (A, <)  to e-FINE: 

a ~ A ~ ( ~  a, 

a_<#, II 
a,# 

Definition. Let (~: (A, <)°- ,e-FINE and ~0:(F, _<)°-,e-FINE be projective systems. 
A morphism from ~ to ,~ is a pair (~0, ~), where ~:(A, _<)--,(F, _<) is a monotone 
map and ¢/: ~)--,¢~ is a natural transformation such that for each a e A ,  the mor- 
phism ~a : ~%(a)-' ~ is mono. 

Definition. The projective system @:(A, _<)°-,e-FINE is complete if for every 
e 

a e A and every normal subgroup N of ~a with a ( x ) e N  for x e ~J~ffi ~Xi((~a), there 
exists a unique f l e A  such that f l<a and N=Ker  H o (it follows that ~ a / N  is a #.a 

quotient e-structure of ~a and ~a = @JN).  

Denote by e, CPS the category of complete projective systems (of finite e- 
structures) with morphisms defined as above. Let e-CPSI be the subcategory of e- 
CPS with the same objects, but only with morphisms (¢p, ~,): @~ ~p such that ~ is 
injective and ~u is a natural isomorphism. 

1.2.1. Proposition. There exists a canonical duality between the categories e- 
PROFIN and e-CPS, which induces a duality between e-PROFINE and e-CPSI. 

Proof .  Define a functor S : e-PROFIN-,(e-CPS) ° as follows. If G is a profinite e- 
structure, denote by A =A(G) the set of open normal subgroups N of G with 

e 

a(x) e N  for x~ ~ffi~ Xi(G). Consider the partial order on A defined by N<_N' iff 
N ' c N .  A is cofinal in the set of all open subgroups of G. 

Let $(G) : (A, <)°~e-FINE be the functor given by 

N ~ A  ~.G/N, 
7t N, N' 

N<_N',-,G/N" ) G / N  the canonical epi. 
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Obviously, $(G) is a complete projective system of finite e-structures. 
Given a morphism 2 : G - , H  in e-PROFIN, let S(,~)= (~0, ~) : S (H)~S(G)  be the 

morphism in e-CPS defined by 

(a :A(H)-~A(G): N ~ A - I ( N ) ;  

qtU: G / A - I ( N ) ~ H / N ,  the canonical mono induced by 2, 

for N e A ( H ) .  
Conversely, define a functor G: (e-CPS)°~e-PROFIN, as follows. If @ : (A, < )04 

e-FINE is an object of e-CPS, let G(@) be the profinite e-s t ruc ture  lirnae A @a. 
Given a morphism (~0,~) in e-CPS from @:(A,<_)°~e-FINE to ,~:(F, < )  ° ~  
e-FINE we get a canonical morphism G(~0, q/) : G(~)~  G(@) of profinite e-structures, 

associated to (¢p, q/). 
It is a simple exercise to verify that the pair (S, G) defines a duality between e- 

PROFIN and e-CPS which induces a duality between e-PROFINE and e-CPSI, as 

contended. [ ]  

2. The cologic for profinite e-structures 

We develop in this section a cologic for profinite e-structures on the line of the 
cologic for profinite groups [7, §2]. 

First we define auxiliary first-order structures dual to profinite e-structures. 

Definition. A projective system o f  (discrete) e-structures is a contravariant functor 
@ defined on a directed partial ordered set (A, _<) with values in the category of 
(discrete) e-structures with epis: 

cecA l@a,  

ce<_l   H 
a,B 

In terms of predicate calculus, a projective system of e-structures is a set S 
together with the following data: 

(i) A subset A of S and a directed partial order _< on A. 
(ii) Some subsets G, X1, . . . ,Xe of S such that S is the disjoint union A 0 

e GOU,=lXi. 
(iii) A binary relations on S which defines a map s: GuU~=~ X i ~ A  in such a 

way that the restriction maps s o : G ~ A ,  si:Xi-~A, i = l , . . . , e  are onto; denote 
Ga =sol(a), Xi, a=SZl(Ol), i=1  .... ,e, a e A .  

(iv) A ternary relation on S which defines for each a e A a group law • on G a. 
(v) A ternary relation on S which defines for each a EA some maps 

Xi,~× G ~ X i , ~ ,  i=  1, ... ,e in such a way that @~= (G~; XI,~, ... ,Xe,~) becomes an 
e-structure. 
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(vi) A binary relation on S which defines for arbitrary a,/~ e A, a_< t ,  an epi of 
e-structures 1-I~p : @#-'*~a, in such a way that the maps a ~ O a  and a<__fl-1J~.~ 
define a contravariant functor @ on (A, _<) with values in the category of e- 
structures with epis. 

Let te be the first-order language for such structures. Clearly the class of projec- 
tive systems of e-structures is axiomatizable in L e by finitely many Iv'Y-sentences. 
Note that an te-embedding doesn't  define always a morphism of projective 

systems. 
Adjoin to te  unary predicates R,  for all positive integers n to get a language L' e. 

Definition. A stratified projective system of e-structures is an te-Structure (S; Rn, 
n > 1) where S is a projective system of e-structures (seen as an te-Structure) and 
for each positive integer n, 

Rn=A(n)LJ ~ (GaU U Xi, ct), with A(n)= { a e A  I(Ga' l)_<n}.  
a~A( ) \ i=! 

The rank of an element a e S is the smallest n e N, if such n exists, subject to 
a e Rn. Otherwise we say that a has infinite rank. 

Definition. The ranked part S (c°) of S is the/. 'e-substructure of S containing only 
the elements of S with finite rank. 

If S ta') is non-empty, then S (°') represents the maximal projective system (not 
necessarily directed) of finite e-structures contained in S. 

Definition. A stratified projective system S is ranked if S=S (~°), i.e. the Le- 
structure S represents a directed projective system of finite e-structures. 

Definition. A stratified projective system S is complete if the projective system of 
finite e-structures represented by S t'°) is directed and complete (see (1.2)), i.e. the 
next conditions are satisfied: 

(i) For n>_ 1, a e A  (n) and N a normal subgroup of Ga with tr(x)OiN for x e  
e 

Ui=l X i ,  ot, there exists uniquely f l e A  such that/~<_a and N = K e r  l-[B, ~. 
(ii) For n_> 1, a, B e A  (n) there is y e A  in2) such that a_<y and fl_<7. 

The class of complete projective systems is Z'e-axiomatizable. 
It follows that the category of complete ranked projective systems with Z e- 

embeddings may be identified with the category e-CPSI introduced in (1.2), the dual 
of e-PROFINE, by (1.2.1). We now use the duality (1.2.1) to extend the cologic for 
profinite groups developed in [7, §2] to a cologic for profinite e-structures. 

I P 

We work with a fragment of the logic Ze. The set of bounded Le-formulas is 
defined as the smallest set of Ze-formulas containing the atomic formulas, closed 
under logical connectives, and closed under 

,-. ( ffx)( R,, (x)A O) 
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where n e N and x is a variable. 
The next lemma is immediate. 

2.1. Lemma. Let S be a stratified projective system, ~ ( X l ,  . . .  , Xm) a bounded L' e- 
formula, and ai, ... , am E S (°~). Then 

S ~  ~(al , . . . ,am) i f f  S (t°)~q~(al,...,am). 

Definitions. (a) A co formula (consentence) for profinite e-structures is a bounded 
! t 

Le-formula (Le-sentence). 

(b) For an/'e-Structure S, the language L'e(S) is the augmentation of L' e by con- 
stants for S. We get the obvious notion of bounded Le(S)-formula. 

(c) A coformula over a profinite e-structure G is a bounded t'e(B(G))-formula 
(see (1.2) for definition of the functor S). 

(d) Let O(Xl,...,xm) be a coformula over G and let a l , . . . ,am~B(G).  G 
cosatisfies $(al, ..., am) (written G ~ $(al , . . . ,  am)) if $(G) ~ $(al , . . . ,  am). 

(e) The cotheory of G (written Coth(G)) is the set of all cosentences cosatisfied 
by G. 

(f) G and H are coequivalent if Coth(G)= Coth(H). 

(g) An epi (0"G--,H is coelementary if the corresponding Le-embedding 
S(~o)" B(H)-, $(G) is b-elementary, i.e. S(tp) preserves bounded Le(S(H))-sentences. 

3. Co-ultraproducts of profinite e-structures 

Let (G~),~er be a family of profinite e-structures and D be an ultrafilter on F. 
For each 2 eF ,  A~ =A(G~) is the set of open normal subgroups N of G~ for which 

e 

a(x) ¢ N for x e [..Ji= ~ Xi(G). If N e A~, then Ga/N is the finite quotient e-structure 
of G~ determined by N. Ax is partially ordered by the relation N < N '  iff N ' C N .  

Form the Le-structure H ~ r  B(GD/D. This ultraproduct is a complete stratified 
projective system of (discrete) e-structures, but is not necessarily ranked. In a func- 
torial setting, I]a~rS(G~)/D is a contravariant functor defined on the directed 
partially ordered set l ]~r (A~ ,  < ) / D  with values in the category of (discrete) e- 
structures with epis, defined on objects as follows: 

(N~)/D~-. H (G,~/N~)/D. 

Denote by 11I ̀0 $(G~)/D the ranked part (I-I $(G~)/D) t'°) of I-I $ ( G a ) / D .  Then 
1-[̀ 0 $(G~)/D is a (directed) complete projective system of finite e-structures. The 
next lemma follows easily from (2.1) and Los' Theorem. 

! 

3.1. Lemma. For each bounded Le-formula ~ ( X l ,  . . . ,  Xm ) and arbitrary f l  , ... ,fro 
H S(G;~) with f l / D , . . .  , f m / D  ~ 1-I`0S(Gz)/D, the next statements are equivalent: 

(i) I~`0S(G~)/D=cp( f l /D, . . . , fm/D)  ' 
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(ii) {2 e FI $(Ga) ~ ~(fl(A), ... ,fro(A))} e D. 

Define the co-ultraproduct IF[ ~° G~/D as the profinite e-structure G(H °~ $(G~)/D) 
corresponding by duality to the complete projective system of finite e-structures 
H °~ $(G~)/D. Moreover, we get obviously a covariant functor H~°/D:e-PROFIN r~  
e-PROFIN inducing by restriction a covariant functor H~°/D:e-PROFINEr-~e - 
PROHNE. For G~ =G for all 2 eF ,  we write G°~r/D instead of H ~° G~/D, and call 
this profinite e-structure the co-ultrapower of G w.r.t, the pair (F, D). Thus we get 
a covariant functor °~r/D:e-PROFIN-~e-PROHN inducing by restriction a 
covariant functor c°r/D : e-PROFINE-~e-PROFINE. The diagonal map 
A" $(G)~$(G)r/D induces by (3.1) a b-elementary map A "$(G)~(S(G)r/D)(C°) 
and by duality a coelementary epi [7 :G~r/D~G. 

We end this section with a constructiofl,\which is useful in Section 6. Let G be a 
profinite e-structure and let F be a cofinal/subset of the directed partially ordered 

e 
set A(G) of open normal subgroups N Of G with a(x)eN for xe~=~Xi(G ). 
Obviously G=limg~rG/N. Consider the family of sets ZN= {UeF[N<_ U} = 
{UeF I UcN}, for all NeF. Since F is cofinal in A(G), the family (ZN)Ner is a 
filter basis on F. Let D be an ultrafilter on F containing the ZN'S for all NeF. 
Consider the canonical epis nN" G ~ G/N for N e  F and define the/-'e-embedding 
2 "$(G)~ HN~r$(G/N)/D induced by the canonical monotone map 

A"(F, <_)---~ H AtG/N)/D: U~,(UN/N)/D. 
N G F  

Clearly 3.' is injective and for each UeF, the canonical morphism G/U--* 
HN~ r (G/UN)/D is an isomorphism since HN~ r (G/UN)/D = (G/U)r/D = G/U as 
G/U is finite. 

The L'e-embedding induces by restriction to ranked parts the L'e-embedding 

A • $ (G)~  H ~' $(G/N)/D. 
N e F  

By duality we get a canonical epi of profinite e-structures 

G(2)- H °' (G/N)/D-,G. 
N e F  

4. Projective profinite e-structures 

A profinite e-structure G is projective if every diagram of profinite e-structures 

G 

E 'H 

(i) 
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with ~ epi, can be completed to a commutative diagram by a morphism O" G-~E. 
(We say that the extension problem (1) has a solution 0). 

In the following we give a characterization of projective profinite e-structures. 

4.1. Proposition. Le t  G be a prof ini te  e-structure. The next statements are 

equivalent: 
(i) G is projective. 

(ii) Every epi q/: E ~ G  splits, i.e. there is i : G--*E with q/i = 16. 
(iii) For each epi q/: E ~ G  there exist a coelementary epi p : G*--,G and a mor- 

ph ism 0 : G * ~ E  such that p = q/O. 
(iv) Every extension problem (1) with ~o, ~ epis and E f ini te  has a solution 

0 : G ~ E .  

Proof. (i)~(ii) is trivial. 
(ii)-,(iii) is immediate. Take G*= G and p--  1 G. 
(iii) - ,  (iv) Consider the diagram (1) with ~p, ~, epis, E finite. By assumption we get 

a commutative diagram 

G* 

0 ' / / ~  p 

T , G  

q/ 
E , H  

where (T; ~,',~p') with ~",~p' epis is the pullback of the pair (~p, q/) and p is a 
coelementary epi. Now, the existence of a solution O for the extension problem (1) 
is obviously equivalent to the fact that G cosatisfies certain cosentence ~ over G. 
Since q~'0' is a solution of the extension problem derived from (1) 

G* 

~P 

¢/ 
E , H  

it follows G * ~  ¢~. As p is a coelementary epi we get finally G = ¢~. 
(iv)~(i).  First observe that (iv) is equivalent with the next statement. 
(iv') Every extension problem (1) with ~, epi, E finite has a solution. 
Indeed it suffices to apply (iv) to the extension problem 
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G 

~ 
r 

~(It) x n  E , ~(I-I) 

where the projection ~ '  is epi since ~, is so. 
Next consider the diagram (1) with ~/epi and assume that the kernel A of the epi 
: E- - ,H is finite. As A is a closed normal subgroup of E, there is an open normal 

subgroup N of E with N N A  = 1. We may assume ~u(N) e A(I-I), i.e. tr(x) ~ N  for all 
Xe UT=I Xi(H)" We get the canonical commutative diagram 

G 

H XH/~(N) E / N - ~  E - , H 

~,' 
E / N  , H/~,(N) 

Since E / N  is finite, we get by (iv') some 0':  G ~ E / N  with rctp = ~ '0 ' .  By universality 
of pullbacks, there is uniquely 0 : G ~ E  with tp= ~0 and 0 '=r t '0 .  

Finally, consider an arbitrary diagram (1) with ~, epi, and let S be the set of pairs 
(N, 2), where N is a closed subgroup of A = Ker ~, which is normal in E and 
2 : G- - ,E /N is a morphism such that ~ = ~btN 2 , with ~UN : E / N - - ' H  induced by ~u. 
The set S is non-empty since (A,q~)eS. Define a partial order on S by: 

(N1, 21) _< (N2, 22) iff  N 2 C N  1 and 21--~N2,  NI22, where ~ZN2,N,:E/N2"-*E/N 1 is 
canonic. S is inductive w.r.t, the order _<. Let (N,2) be a maximal pair in S. If 
N:# 1, then there exists by [18, Ch.I, Lemma 5], a proper open subgroup N '  of N 
which is normal in E. Then N/N"  is finite and so there is 2 ' :  G - , E / N '  with 2 = ~,'2', 
where ~v': E / N ' - - , E / N  is canonic. We get (N', 2') ~ S and (N', 2') > (N, 2) contrary 
to maximality of (N, 2). Consequently N =  1 and ~o = ~,2. [] 

Remark. It is shown in [5, Theorem 3.1] that the statements (i)-(iv) above are also 
equivalent with the following one. 

(v) Every extension problem (1), with E finite, ~u Frattini cover of  H (i.e. there 
is no proper sub-e-structure E' of E such that the restriction ~,/E': E'--*I-I is epi) and 
A = Ker ~ abelian minimal normal subgroup of E, has a solution. 

It is obtained in this way a suitable generalization of a well known characteriza- 
tion of projective profinite groups [12, Proposition 1]. 

We end this section with a lemma which is useful in Section 6. 
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4.2. Lemma.  Let G be a projective pro finite e-structure. Then 772 is a quotient e- 
structure o f  G. 

Proof. For all i = 1, . . . ,  e, fix some xi ~ Xi(G),  and let o- i = a(xi). Let E be the pro- 
finite e-structure with underlying profinite group E = G × 7//2~', and E-sets Xi(E) = 

Hi \ E where Hi is the cyclic group of  order 2 of  E generated by the involution 
(ai, 1 + 27/), i = 1, . . . ,  e. The action of  E on X/(E) is given by: (Hi(g, r), (g', r')) ~, 

, + Hi(gg,r  r ' ) ,  for g,g '~G,  z,r '~77/27/.  The profinite e-structure E with the 
epis p I " E ~ G ,  p2"E~7 /2  given by pO(g,r)=g, p O ( g , r ) = r ,  pi(Hi(g,v))=xg ' 
p~(Hi(g, r)) -- *, i = 1, . . . ,  e, is a direct product  of G and 7/2. As G is projective there 
is a mono r/: G-- ,E splitting P l ,  i.e. p~r/= 1G. Thus we get a morphism p2r/:  G ~ Z  2. 
Since the morphisms of  e-structures taking values in 7/2 are epis, we conclude that 
7/2 is a quotient e-structure of  G. [] 

5. From e-fold ordered fields to profinite e-structures 

Let K = (K; P1, ---, Pe) be an e-field, e > 1, and L be a Galois extension of  K such 
that L is not formally real (fr) over the ordered fields (K, Pi), i= 1, ... ,e. We 
natural ly assign to the pair (K,L) a profinite e-structure G(L/K)=(G(L /K) ;  
X I(L/K), . . . ,  Xe(L/K)) called the Galois e-structure of  L / K .  The underlying group 
of  G(L/K)  is the Galois group G(L/K)  of L over K, X i (L /K  ) is the set of  pairs 
(a, Q),  a an involution of  G(L/K),  Q an order extending Pi on the fixed field L(a), 
and the action Xi(L/K)  × G ( L / K ) ~ X i ( L / K )  is given by ((a, Q), r ) ~ ( a  ~, QT) with 
aT= r- lar ,  Qr= {a T := r(a) [ a ~  Q}.  It follows easily that  the invariant subgroup of  
some (a, Q ) ~ X i ( L / K  ) is the cyclic group of  G(L/K)  generated by the involution a .  
Note that  G(L/K)  is the projective limit li__m G(E/K)  of  finite e-structures, where E 
ranges over all finite Galois extensions of  K with E C L and E is not fr over (K, Pi), 
i - -1, . . . ,e .  

In particular,  if L =/~  is the algebraic closure of  K, we get the absolute Galois e- 
structure G(K) =G( /~ /K)  of  the e-field K. Note that  Xi(K)=Xi ( I ( /K  ) is identified 
with the set of  involutions a of  G(K) = G(I~/K) for which the fixed field/~(o-) is a 
ral closure of  (K, Pi) ,  i = 1,..., e. 

Denote by F e the first-order language of  e-fields. F e is an extension of  the 
language ( + , - , . , 0 ,  1) of  rings with e unary  predicates nl , . . . ,ne  standing for 
orders. 

A basic fact is that  the cotheory of  G(K), K an e-field, is interpretable in K, as 
follows f rom the next analogue of  [7] Lemma 17. 

5.1. Proposition. There is a recursive map @~ ~ f rom cosentences to Fe-Sentences 
such that for  every cosentence ¢p and every e-field K, G(K) = ¢~ i f f  K ~ ~. 

Proof. The statement is a consequence of  the following facts: 



12 ~.A. Basarab 

(1) Under the Galois duality L ~ G ( L ) ,  the following objects are in 1-1 cor- 
respondence: finite Galois extension L/K ,  with [L :K] = m  and L not fr over 

e 

(K, Pi), i =  1, ... ,e, and open normal subgroups N e A ( G ( K ) )  (i.e. N N  [-Ji=l Xi(K) is 
empty) with (G(K) : N)  = m. 

(2) Coding finite extensions of K in K: For each m, let us fix the basis 
( b l ,  . . . ,  bin) o f  g m by b i = (0, . . . ,  1, 0, . . . ,  0 )  with 1 on the i th place. Then a point 
(Cijk)~j,k<_m=CEg m3 uniquely determines an m-dimensional K-algebra Ac. It 
follows via the splitting field criterion that the c such that Ac is a Galois extension 
of K form a first-order definable subset of  K m3. Moreover, the (c, d ) e  Kin3× K n3 
for which Ac, A d  are Galois extensions of K and Ac is K-embeddable in A d  form 
a first-order definable subset of Km3x K n3. 

(3) For each finite e-structure G, the c E K  m3 for which Ac is a Galois extension 
of K, not fr over (K, Pi), i =  1, . . . ,e,  and G ( A c / K ) = G  form an/:e-definable subset 
of  K m3. Indeed, the condition "Ac  is not fr over (K, Pi)" is equivalent to the ex- 
istence of some z ~ A c  such that the minimal polynomial of z over K has no roots 
in the real closure (K, Pi) of (K, Pi). On the other hand the condition "the subfield 
A d  of Ac as above is maximal with the property that A d  is fr over (K, Pi) and there 
are k distinct orders extending Pi on A d "  is equivalent to the fact that 
[Ac : Ad] = 2, A d  = K[z] and the minimal polynomial of  z over K has k distinct roots 
in (K, Pi). Note that the statements above may be translated in the language of 
(K; PI , - . . ,Pe)  thanks to elimination of quantifiers for real closed fields. [] 

The next result is a generalization of [7, Lemma 19]. 

5.2. Lemma. Let D be an ultrafilter on the index set F, and Ky = (Ky; Pl, y, ..., Pc, y), 
y e F, be e-fields. For each y e F, let Ly be a Galois extension o f  Ky such that Ly is 
not f r  over (Ky, Pi, y), i= 1, ..., e. Assume that there exists m ~ N such that for  
almost all (relative to D)  y e F, there exists a finite Galois extension My o f  Ky, con- 
tained in L v, which is not f r  over (Ky, Pi, y), i = 1,... ,  e, with [My : Ky] <_ m. 

Denote by K = (K; P1, .. . ,  Pc) the ultraproduct lI Ky/D and by L the algebraic 
closure o f  K in II Ly/D.  Then L is Galois over K and not f r  over (K, Pi), i = 1, ...,  e, 
and G(L/K) is canonically isomorphic to the co-ultraproduct 1-I ~ G(Ly/Ky)/D. 

Proof.  The statement follows from the next facts, which are consequences of Los' 
theorem and elimination of quantifiers for real closed fields: 

(1) A Galois extension of I[ Kr/D of degree n, contained in l 'ILy/D, can be 
identified with some 1-[ Nr/D,  where Ny is a Galois extension of Ky, contained in 
Ly, which is for almost all (relative to D) y e F of degree n over K r. 

(2) In the above, II Ny/D is not fr over  (K, Pi), i = 1,..., e, iff  Ny is not fr over 
(Ky,Pi, y), i=  1, . . . ,e,  for almost all y e F .  In this case, the finite e-structure 
G(II N y / D I K )  is naturally isomorphic to lI G(Ny/Ky)/D. [] 
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5.3. Corollary.  Let D be an ultrafilter on the index set F and Ky, y ~ F, be e-fields. 
Then G(I-[ Ky/D) is canonically isomorphic to I-[ ~ G(Ky)/D. 

6. Proof  of the main results 

In order to prove the two main  results of the paper we need the following lemma, 
a non-trivial generalization of  [11, Lemma 1.1], [3, II, Lemma 4.1]. 

6.1. Lemma.  Let K = (K; Pl, ... ,Pe) be an e-field, L a Galois extension o f  K which 
is not f r  over (K, Pi), i= 1, ..., e, G a profinite e-structure and ~u: G ~ G ( L / K )  an 
epi. Then there exist an extension E = (E; Q1,.. . ,  Qe) o f  K, with E regular over K, 
a Galois extension F o f  E such that L is the algebraic closure o f  K in F (in particular, 

F is not f r  over (E, Qi), i= 1, ... , e) and an isomorphism r/: G ~ G ( F / E )  such that the 
next diagram is commutative 

G , G ( F / E )  

G(L/K) 

(1) 

~(xi~)=(ai~,Q'i ~) for 2 e G = G ( F / E ) ,  i = l , . . . , e .  

Fix some i~  { 1, . . . ,  e} and let M=L(ri) .  Then there exists a e L \ M such that 
L =M[a]  and - a  2 eP:.  ai acts obviously on the field of  rat ional  functions M(U). 
Let N D M  be the fixed field of  ai in M(U). 

Proof. (a) First, let us consider the finite case, i.e. assume G(L/K)  and G are finite. 

Let U =  {u g I g e G } be a set o f  ]G ] algebraically independent  elements over K. The 
group G acts on U from the right in an obvious manner.  It also acts on L through 

~u by the formula  a g = a ~'(g). Consequently,  G acts on the field of  rat ional  functions 
F=L(U) .  Let E be the fixed field of  G in F. It follows that  E N L  = K  and LE is 

regular over L, as a subfield of  a rational funct ion field over L, and hence E is 

regular over K. Now let us identify the group G with G(F/E) in the obvious manner  

and the group epi ~: G ~ G ( L / K )  with the restriction res : G ( F / E ) ~ G ( L / K ) .  It re- 

mains to show that  there are some orders Qi of E such that  Qi extends Pi, 
i =  1 , . . . ,e ,  and the identity group isomorphism 16 extends to an isomorphism 
r/: G-*G(F /E)  of  e-structures in such a way that  the diagram (1) commutes.  

Fix some xi ~ X/(G), i = 1, . . . ,  e, and let ai = a(xi) ~ G = G(F/E). Then ~u(xi) = 
(ri, P:), where ri is an involution of  G(L/K)  which coincides with the restriction of 
tr i on L and P: is an order extending Pi on the fixed field L(ri) of  zi in L. So it suf- 

fices to extend P: to an order Qf on the fixed field F(tTi) of o- i in F, take the restric- 
t ion Qi o f  Q; o n  E and define 
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First let us show that F(ai) = N [ a ( u  I - uaO]. Each element of F can be uniquely 

written in the form f + a f '  with f , f ' e M ( U ) .  Let f + a f ' e F ( a i ) .  Then f + a f ' =  

( f  + af,)~i =fa~_ af ,  a,, and hence fa~ = f  and f , a ,=  _ f , .  Thus we get 

f +  a f '  = f +  a(u ~ - u a ' ) ( f ' / (u  ~ - u ai)) e N[a(u ~ - u ~')] 

since f e N  and f ' / ( u  I - u ~') e N .  
In order to extend Pi to an order Q; of F(tr i ) ,  it suffices to extend P[ to an order 

Q7 of N in such a way that (u 1 - u";)2e -QT-  For, if so, then (a(u I - u a g ) 2 e Q T ,  

i.e. F(ai) is fr over (N, QT). 
Consider the tower of fields 

M c S c N c M ( U )  

where 
S m M ( u  2 + u )'tri, u2u  Aai I~t E G )  = M ( u  )t + u Atri ( u  2 - u~ai)2]t~ E G) .  

As the transcendency degree of M ( U ) / M  is I GI and M ( U ) =  S[u ~ ). e G] with 
the u a algebraic over S, it follows that S / M  is purely transcendental and the set 
{u ~ + uX% (u a - uX~')2 [ A e G} is a transcendency basis of M ( U ) / M .  Consequently, 
there exists some order Q "  of S such that Q "  extends P~ and (u ' t -  u ' l a ' ) 2e -  Q "  
for all ). e G. Let Q "  be such an order. It remains to show that N is fr over (S, Q" ) .  

Let N ' =  S[(u ~ - uXai)(u I - u ~') ;~ e G]. Let us show that N ' = N .  The inclusion 
N ' c N  is trivial, so it remains to verify that [ M ( U ) : N ' ]  = 2. Since [N'[u I ] "N']  = 2, 
it suffices to show that M ( U ) = N ' ( u l ] .  However the latter equality is a conse- 
quence of the identities u ~ = a~ + fl,~u l, 2 e G, with 

u ~ _  u ~ ,  (u ~ _  u ~ , ) ( u  ~ _ u~,)  

fl2t -- ul  uai - (UI _ uai) 2 ~ N ' ,  

u I u~O, _ uO, u ~ (u  ~ + u ~ , )  _ fl~ (u 1 + u a') 

aa = u 1 _ uai 2 e N' .  

Thus we get N ' =  N. 

Let Ca = ( ua - uaa')( ul - uai), 2 e G, and so N =  S[(a 12 e G]. Let us show that the 
degree of S [ ( a ] = S [ ( a j  over S is 2 for 2:#1,  2:/:ai. Obviously, ( ] e S .  On the 
other hand, (a ¢ S for A :# 1, A :# ai, since u ~ -  u a"~ and u 1 -  u ~' are algebraically in- 
dependent over M and the polynomial W 2 -  Y Z e M ( Y ,  Z)[W] is irreducible. As 
(2= [ _ ( u a _ u X ~ 9 2 1 [ _ ( u l _ u , , ) 2 ]  e Q" ,  the order Q "  of S can be extended to an 
order of N, as contended. 

(b) Now let as consider the general case. Let F be the subset of A(G) consisting 
of  those N with ~v(N)eA(G(L/K),  i.e. the fixed field LN of ~(N) in L is a finite 
Galois extension of K which is not fre over (K, Pi), i = 1, . . . ,  e. F is cofinal in A(G), 

G--- lim~ G/N, G(L/K) -= lim~_ G(LN/K ) and ~, = li,_m q/N, 
NeF N~F N~F 

where the epis ~N" G / N - - ' G ( L N / K )  are induced by ~,. Using the construction from 
Section 3 we get a commutative diagram of epis for a suitable ultrafilter D on F 
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H ~° qlN/D 
H °~ (G/N)/D ' l-I" G(LN/K)/D 

o' (2) 

G -~ G(L/K) 

On the other hand, by the first part of the proof, we get for each Nel"  an extension 

EN = (EN; Q1, N,-.-,  Qe, N) of K with EN regular over K, and a finite Galois extension 
FN of EN in such a way that LN is the algebraic closure of K in EN, the e-structure 
G(FNAEN) is identified with G/N and the epi ~'N is identified with the restriction 

res.G(FNAEN)--'G(LNIK). Let K*=(K*;  P~,...,Pe*)=Kr/D, E = ( E ;  Q1,...,Qe)= 
1-[ EN/D, L* be the algebraic closure of K* in H LN/D and M be the algebraic 
closure of E in 1-I EN/D. Consider the diagram of fields 

/ 

L j 

f K *  
/ 

K ~ 

j M  
Z * j  

~ E  (3) 

We get easily that the extensions E/K, E/K*, M/L and M/L* are regular. Fix some 
U in F and let (G : U) = m. Since, by choice of D, { V~ F I U <  V} e D  it follows that 
for almost all N e  F, FN contains a subfield which is Galois over EN, not fr over 

(EN, Qi, N), i=  1, . . . , e ,  and of degree over EN bounded by m. Consequently, by 
(5.2), the Galois extension M of E is not fr over (E, Qi), i = 1,. . . ,  e, and G(M/E) is 
canonically isomorphic to 1-[~G(FN/EN)/D -- H'°(G/N)/D. Similarly, the Galois 
extension L* of K* is not fr over (K*, P*), i = 1,. . . ,  e and G(L*/K*) is canonically 
isomorphic to I] ~ G(LN/K)/D. From (2) and (3) we get the commutative diagram 
of epis 

res  = l"I w ~N/D 
, G(L*/K*) G(M/E) 

°I res  = 0 '  

G I I  1 ' G ( L / K )  

It remains to take F the fixed field of Ker 0 in M/E to get a Galois extension F of 
E such that L is the algebraic closure of K in F and G(F/E),  res" G(F /E ) - ,G(L /K)  
are respectively identified with G and ~, as contended. [] 

6.2. Proof of Theorem I. Let K = (K; PI , - - . ,  Pe) be a prc e-field. We have to show 
that G(K) is projective. According to (4.1) it suffices to show that for every epi 
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~,: G--*G(K) there exist a coelementary epi p : T ~ G ( K )  and a morphism 0 : T ~ G  
such that p = ~0. Given an epi ~g: G--*G(K) it follows by (6.1) that there exist an 
extension E = (E; QI,'",  Qe) of K, with E regular over K and a subfield F of the 
algebraic closure E of E such that the algebraic c losure/ (  of  K is contained in F, 
F is Galois over E, and G(F/E), res : G(F /E)~G(K)  are respectively identified with 
G and ~. Since, by assumption, K is a prc e-field, it follows that K is ec in E and 
hence by Scott's lemma [6, Lemma 8.1.3, Corollary 9.3.11], E can be embedded 
over K into an elementary extension K* of K. Thus we get the canonical com- 
mutative diagram of profinite e-structures 

G(K*) 

,/J 
6 = 6 ( F / E )  , G(Kt 

where the restriction 0 is not necessarily an epi. Finally note that the restriction p 
is a coelementary epi according to (5.1). [] 

Remark. A tentative to prove the theorem above in the special case e = 1 is due to 
McKenna [ 15] but unfortunately the proof of [ 15, Theorem 1.1] contains a mistake, 
though the respective statement is correct. The error occurs at page 1.6, where the 
Hoschild-Serre sequence contains the incorrect term H2(N, u) instead of the correct 
one HI(g, H 1 (GK(2), u)). By contrast with McKenna's intricate approach which re- 
quires Galois cohomology, the proof given here is quite simple and of model- 
theoretic nature. 

Finally let us prove the second main result of the paper, which gives a charac- 
terization of profinite e-structures which can be realized as absolute Galois e- 
structures over prc e-fields. 

First we prove a little more general result. 

6.3. Theorem. Let K = (K; P1,.. . ,  Pe) be an e-field, L a Galois extension o f  K such 
that L is not f r  over (K, Pi), i= 1, ..., e, G a profinite e-structure and ~g : G-*G(L/K) 
an epi. Then the next statements are equivalent: 

(i) There exist an e-field extension E o f  K and an isomorphism 0 : G ~ G ( E )  such 
that E is a prc e-field, E N L = K  and the diagram 

0 
G , G(E) 

6(L/K/ 
is commutative. 

(ii) G is projective. 
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Proof. (i)--,(ii) follows by (6.2). 

(ii)-,(i) .  Assume G is projective. By (6.1), there exist a regular e-field extension 
K' of  K and a Galois extension L '  of  K '  such that L is the algebraic closure of  K 
in L '  and the restriction res : G(L' /K')--- ,G(L/K) is identified with the epi q/. Accord- 
ing to [17, Theorem 1.1] there exists a regular e-field extension M = (M; Q1, ..., Qe) 
of K' such that M is a prc e-field. Consider the commutat ive  diagram 

2 
G(M) ~ G(L ' /K ' )  = G 

G(L/K) 

where 2 and ~0 are restriction epis. As G is projective, there exists a mono 
~ : G - - . G ( M )  splitting 2. Note that for each involution r of  G there is some 

e 

x e ~ i = l X i ( G )  with r=o-(x).  Indeed ~(r)  is an involution of  G(M) and hence 
/Z(Z') e U~= 1Xi(M) since Ol, ..., Oe are the only orders of  M. Assume/z(r )  eXi(M). 
Then we get 

r = 2°(p(r))  = 2°(cr(p(r))) = tr(2i(/z(r)). 

Thus r = tr(x) with x = 2 i ( p ( r ) )  eXi (G) .  

Let E C A I  be the fixed field of  p (G) .  Since p(G) is a sub-e-structure of  G(M), we 

get l t (Xi(G))={tr[[relu(G)} for some involution trie/u(G) for which A~(tri) is a 
real closure of  (M, Qi), i=  1, . . . .  e. Let Q;=Ef)ATl(ai)2 , i =  1 , . . . , e .  Then /z(G) 
is identified with the absolute Galois e-structure of  the e-field extension E--  

(E; Q~, . . . ,  Qe) of  M. The remark above on the involutions of  G implies that  there 
f ! 

are only e distinct orders on E, namely Q~ .. . .  , Qe, extending respectively the orders 
QI, . . . ,  Qe of  the prc e-field M. Since E is algebraic over the prc field M it follows 
by [17, Theorem 3.1] that E is prc too, and so E is a prc e-field. Finally we get the 
commutat ive diagram 

G(E) =/.t(G), , G 

G(L/K)  

Obviously, ~PI~(G) is epi, i.e. E N L = K ,  as contended. [] 

Remarks .  (i) Taking in the statement above L = / (  and ~ : G ~ G ( K )  an epi, it follows 
that the prc e-field E f rom (i) is regular over K. 

(ii) It follows f rom the proof  above that for each involution r of  a projective pro- 
e 

finite e-structure G there is x ~  [.-Ji=l Xi(G) with r =  or(x). 

The second main result of  the paper is an immediate consequence of  (6.3). 
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6.4. Proof of Theorem II. Let G be a profinite e-structure. If G = G(K), K a prc e- 
field, then G is projective by Theorem I. Conversely, assume G is projective, and 
let K be an e-field and L =K(i), i 2 = -  1. Since G is projective, we get by (4.2) an 
epi ~/: G--'Z2----G(L/K). Applying (6.3), we get a prc e-field E with G(E)=-G. [] 
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