THE ABSOLUTE GALOIS GROUP OF A PSEUDO REAL CLOSED FIELD WITH FINITELY MANY ORDERS

Şerban A. BASARAB*

Central Institute for Management and Informatics, B.D. Miciurin, Nr. 8-10, Bucharest 1, Rumania, and Institute for Mathematics, Str. Academiei 14, Bucharest 1, Rumania

Communicated by C. Mulvey Received 24 August 1983 Revised 18 April 1984

Contents

1.	Profinite <i>e</i> -structures	3
2.	The cologic for profinite <i>e</i> -structures	5
3.	Co-ultraproducts of profinite e-structures	7
4.	Projective profinite <i>e</i> -structures	8
5.	From e-fold ordered fields to profinite e-structures	11
6.	Proof of the main results	13

Introduction

In his celebrated paper [1] on the elementary theory of finite fields Ax considered fields K with the property that every absolutely irreducible variety defined over K has K-rational points. These fields have been later called *pseudo algebraically closed* (pac) by Frey [10] and also *regularly closed* by Ershov [8], and extensively studied by Jarden, Ershov, Fried, Wheeler and others, culminating with the fundamental works [7] and [11].

The above definition of pac fields can be put into the following equivalent version: K is existentially complete (ec), relative to the customary language of fields, into each regular field extension of K. It has been this characterization of pac fields which the author extended in [2] to ordered fields. An ordered field (K, \leq) is called in [2] pseudo real closed (prc) if (K, \leq) is ec in every ordered field extension (L, \leq) with L regular over K. The concept of prc ordered field has also been introduced

^{*} The present paper is the contents of 1-3, 9-10 of the report [4] earlier submitted as a whole for publication in J. Pure Appl. Algebra.

The author thanks very much the referee for suggesting him a better organization of the paper and informing him about Ershov's note [9] announcing certain results which are similar with some results proved in §12-13 of [4].

by McKenna in his thesis [14], by analogy with the original algebraic-geometric definition of pac fields.

Recently, Prestel [17] introduced a very inspired concept which extends the concept of a pac field as well as of a prc ordered field. According to [17], a field K is said to be *prc* if K is ec, relative to field language, in every regular field extension of K to which all orders of K extend.

A system $\mathbf{K} = (K; P_1, ..., P_e)$, where K is a field, e is a positive integer and $P_1, ..., P_e$ are orders of K (identified with the corresponding positive cones), is called an *e-fold ordered field* (*e*-field). It turns out by [17, Theorem 1.7] that an *e*-field K is ec, relative to the first-order language of *e*-fields, in every regular *e*-field extension of K iff K is prc, $P_i \neq P_j$ for $i \neq j$ and K has exactly e orders. Let us call such an *e*-field K a prc *e-field*.

It is well known that the absolute Galois group G(K) of a pac field K is a projective profinite group (see [1] for perfect pac fields). It is also known [16], [7, Proposition 38], that all projective profinite groups occur as G(K), K a pac field. The main goal of the present paper is to prove that the statements above remain true for prc *e*-fields K if we replace the absolute Galois group G(K) by a suitable generalization G(K) called the absolute Galois *e*-structure of the *e*-field K, and projectivity for profinite groups by projectivity for the so called profinite *e*-structures.

Theorem I. Let **K** be a prc e-field. Then its absolute Galois e-structure **G**(**K**) is a projective profinite e-structure.

Theorem II. The necessary and sufficient condition for a profinite e-structure **G** to be realized as the absolute Galois e-structure over some prc e-field is that **G** is projective.

In order to prove the theorems above we introduce and investigate in Sections 1-4 some group-theoretic objects called *e-structures*. Some basic facts concerning the model theory of profinite *e*-structures are developed in Sections 2,3 on the line of the cologic for profinite groups from [7]. The projective profinite *e*-structures are characterized in Section 4.

Section 5 answers the question: what is the appropriate extension to the theory of *e*-fields of the basic concept of Galois group from the field theory? [appropriate in the sense that it must reflect the Galois group structure as well as the relation between this one and the orders of a given *e*-field]. The answer to this question is suggested by the concept of *order-pair* introduced in [13]. It turns out that the suitable group-theoretic concept for *e*-fields is the concept of profinite *e*-structure introduced in Section 1. To each *e*-field **K** we naturally assign a profinite *e*-structure G(K), called the *absolute Galois e-structure* of **K**, in such a way that the elementary statements about **G**(**K**) are interpretable in the first-order language of **K**.

Finally. the proofs of the main results stated above are given in Section 6.

1. Profinite e-structures

1.1. Let us fix a natural number e. By an *e-structure* we mean a system $G = (G; X_1, ..., X_e)$, where G is a group and the X_i 's are non-empty G-sets satisfying the next conditions:

(i) The actions $X_i \times G \to X_i : (x, \tau) \mapsto x^{\tau}$ are transitive, i.e. the X_i 's are G-orbits.

(ii) For $x \in X_i$, i = 1, ..., e, the invariant subgroup $Inv(x) = \{\tau \in G \mid x^{\tau} = x\}$ is cyclic of order 2.

If $x \in \bigcup_{i=1}^{e} X_i$, denote by $\sigma(x)$ the involution of G which generates Inv(x).

Given an *e*-structure **G**, we usually denote by G the underlying group of **G** and by $X_i(\mathbf{G})$, i = 1, ..., e, the corresponding G-sets.

A morphism of *e*-structures from **G** to **H** is an (e+1)-tuple $\varphi = (\varphi^0, \varphi^1, \dots, \varphi^e)$, where $\varphi^0: G \to H$ is a group morphism and $\varphi^i: X_i(\mathbf{G}) \to X_i(\mathbf{H}), i = 1, \dots, e$, are maps subject to the following conditions:

(i) $\varphi^i(x^{\tau}) = \varphi^i(x)^{\varphi^0(\tau)}$ for $x \in X_i(\mathbf{G}), \tau \in G$.

(ii) $\varphi^0(\sigma(x)) = \sigma(\varphi^i(x))$ for $x \in X_i(\mathbf{G})$.

Usually we denote by the same letter, say φ , the maps $\varphi^0, \varphi^1, \dots, \varphi^e$ defining a morphism of *e*-structures.

Call φ : **G** \rightarrow **H** a mono (epi) if φ^0 : **G** \rightarrow H is injective (surjective).

A sub-e-structure of G is an e-structure H, where H is a subgroup of G and $X_i(\mathbf{H})$ is a subset of $X_i(\mathbf{G})$, i = 1, ..., e, subject to

(i) There is $x_i \in X_i(\mathbf{G})$ such that $\sigma(x_i) \in H$, i = 1, ..., e.

(ii) $X_i(\mathbf{H}) = \{x_i^{\tau} | \tau \in H\}$ with x_i as above, and the action of H on $X_i(\mathbf{H})$ is induced by the action of G on $X_i(\mathbf{G})$, i = 1, ..., e.

A quotient e-structure of **G** is an e-structure **E** where E = G/N for some normal subgroup N of G with $\sigma(x) \notin N$ for $x \in \bigcup_{i=1}^{e} X_i(\mathbf{G}), X_i(\mathbf{E}) = X_i(\mathbf{G})/N$ is the quotient set w.r.t. the next equivalence relation induced by N:

 $x \sim x' \quad \Leftrightarrow \quad (\exists \tau \in N) \; x' = x^{\tau},$

for $x, x' \in X_i(\mathbf{G})$, i = 1, ..., e, and the actions of E on the $X_i(\mathbf{E})$'s are induced by the actions of G on the $X_i(\mathbf{G})$'s.

If $\varphi: \mathbf{G} \to H$ is a morphism of *e*-structures, then the image $\varphi(\mathbf{G}) = (\varphi^0(G); \varphi^1(X_1(\mathbf{G})), \dots, \varphi^e(X_e(\mathbf{G})))$ is a sub-*e*-structure of **H** and $\varphi(\mathbf{G}) \cong \mathbf{G}/\mathrm{Ker} \varphi^0$.

Let $\varphi: \mathbf{G} \to \mathbf{H}, \varphi': \mathbf{G}' \to \mathbf{H}$ be morphisms of *e*-structures and assume that the sets $X_i(\mathbf{G}) \times_{X_i(\mathbf{H})} X_i(\mathbf{G}'), i = 1, ..., e$, are non-empty. Then

$$\mathbf{G} \times_{\mathbf{H}} \mathbf{G}' = (\mathbf{G} \times_{\mathbf{H}} \mathbf{G}'; X_1(\mathbf{G}) \times_{X_1(\mathbf{H})} X_1(\mathbf{G}'), \dots, X_e(\mathbf{G}) \times_{X_e(\mathbf{H})} X_e(\mathbf{G}'))$$

with the canonical morphisms $p: \mathbf{G} \times_{\mathbf{H}} \mathbf{G}' \to \mathbf{G}$, $p': \mathbf{G} \times_{\mathbf{H}} \mathbf{G}' \to \mathbf{H}'$ is a pullback of the pair (φ, φ') .

An e-structure G is called finite (profinite) if the underlying group G is finite (profinite). By morphisms, monos, epis of profinite e-structures we understand continuous morphisms, monos, epis. By a sub-e-structure H of a profinite e-structure G we mean a sub-e-structure of G for which H is a closed subgroup of G. The simplest example of *e*-structure denoted by \mathbb{Z}_2 has $\mathbb{Z}/2\mathbb{Z}$ as underlying group which acts trivially on the singletons $X_i(\mathbb{Z}_2) = \{*\}, i = 1, ..., e$. \mathbb{Z}_2 has no proper sub*e*-structures and quotient *e*-structures.

1.2. Denote by *e*-FIN (*e*-PROFIN) the category of finite (profinite) *e*-structures. let *e*-FINE (*e*-PROFINE) the subcategory of *e*-FIN (*e*-PROFIN) with the same objects, but only with epis.

Now we extend the duality for profinite groups from [7, \$2] to profinite *e*-structures.

Definition. A (directed) *projective system* (of finite *e*-structures) is a contravariant functor \bigotimes from a directed non-empty partial ordered set (Λ, \leq) to *e*-FINE:

$$\alpha \in \Lambda \mapsto \mathfrak{G}_{\alpha},$$

$$\alpha, \beta \in \Lambda, \ \alpha \leq \beta, \ \mapsto \prod_{\alpha,\beta} : \mathfrak{G}_{\beta} \to \mathfrak{G}_{\alpha}$$

Definition. Let $\mathfrak{G}: (\Lambda, \leq)^0 \to e$ -FINE and $\mathfrak{G}: (\Gamma, \leq)^0 \to e$ -FINE be projective systems. A morphism from \mathfrak{G} to \mathfrak{G} is a pair (φ, ψ) , where $\varphi: (\Lambda, \leq) \to (\Gamma, \leq)$ is a monotone map and $\psi: \mathfrak{G} \to \mathfrak{G}$ is a natural transformation such that for each $\alpha \in \Lambda$, the morphism $\Psi_{\alpha}: \mathfrak{G}_{\varphi(\alpha)} \to \mathfrak{G}_{\alpha}$ is mono.

Definition. The projective system $\mathfrak{G}: (\Lambda, \leq)^0 \to e$ -FINE is complete if for every $\alpha \in \Lambda$ and every normal subgroup N of \mathfrak{G}_{α} with $\sigma(x) \notin N$ for $x \in \bigcup_{i=1}^{e} X_i(\mathfrak{G}_{\alpha})$, there exists a unique $\beta \in \Lambda$ such that $\beta \leq \alpha$ and $N = \text{Ker } \prod_{\beta,\alpha}^{0}$ (it follows that \mathfrak{G}_{α}/N is a quotient e-structure of \mathfrak{G}_{α} and $\mathfrak{G}_{\beta} \cong \mathfrak{G}_{\alpha}/N$).

Denote by *e*-**CPS** the category of complete projective systems (of finite *e*-structures) with morphisms defined as above. Let *e*-**CPSI** be the subcategory of *e*-**CPS** with the same objects, but only with morphisms $(\varphi, \psi) : \mathfrak{G} \to \mathfrak{F}$ such that φ is injective and ψ is a natural isomorphism.

1.2.1. Proposition. There exists a canonical duality between the categories e-**PROFIN** and e-**CPS**, which induces a duality between e-**PROFINE** and e-**CPSI**.

Proof. Define a functor S: e-**PROFIN** $\rightarrow (e$ -**CPS** $)^0$ as follows. If G is a profinite *e*-structure, denote by $\Lambda = \Lambda(G)$ the set of open normal subgroups N of G with $\sigma(x) \notin N$ for $x \in \bigcup_{i=1}^{e} X_i(G)$. Consider the partial order on Λ defined by $N \leq N'$ iff $N' \subset N$. Λ is cofinal in the set of all open subgroups of G.

Let $S(G): (\Lambda, \leq)^0 \rightarrow e$ -FINE be the functor given by

$$N \in A \mapsto \mathbf{G}/N$$
,
 $N \leq N' \mapsto \mathbf{G}/N'$, $\xrightarrow{\pi_{N,N'}} \mathbf{G}/N$ the canonical epi.

Obviously, S(G) is a complete projective system of finite *e*-structures.

Given a morphism $\lambda : \mathbf{G} \to \mathbf{H}$ in *e*-**PROFIN**, let $\mathbf{S}(\lambda) = (\varphi, \psi) : \mathbf{S}(\mathbf{H}) \to \mathbf{S}(\mathbf{G})$ be the morphism in *e*-**CPS** defined by

 $\varphi: \Lambda(\mathbf{H}) \to \Lambda(\mathbf{G}): N \mapsto \lambda^{-1}(N);$

 $\psi_N: \mathbf{G}/\lambda^{-1}(N) \to \mathbf{H}/N$, the canonical mono induced by λ ,

for $N \in \Lambda(\mathbf{H})$.

Conversely, define a functor $G: (e-CPS)^0 \rightarrow e-PROFIN$, as follows. If $\mathfrak{G}: (\Lambda, \leq)^0 \rightarrow e$ -FINE is an object of e-CPS, let $G(\mathfrak{G})$ be the profinite e-structure $\lim_{\alpha \in \Lambda} \mathfrak{G}_{\alpha}$. Given a morphism (φ, ψ) in e-CPS from $\mathfrak{G}: (\Lambda, \leq)^0 \rightarrow e$ -FINE to $\mathfrak{H}: (\Gamma, \leq)^0 \rightarrow e$ -FINE we get a canonical morphism $G(\varphi, \psi): G(\mathfrak{H}) \rightarrow G(\mathfrak{G})$ of profinite e-structures, associated to (φ, ψ) .

It is a simple exercise to verify that the pair (S, G) defines a duality between *e*-**PROFIN** and *e*-**CPS** which induces a duality between *e*-**PROFINE** and *e*-**CPSI**, as contended.

2. The cologic for profinite *e*-structures

We develop in this section a cologic for profinite e-structures on the line of the cologic for profinite groups [7, §2].

First we define auxiliary first-order structures dual to profinite e-structures.

Definition. A projective system of (discrete) e-structures is a contravariant functor (G) defined on a directed partial ordered set (Λ, \leq) with values in the category of (discrete) e-structures with epis:

$$\alpha \in \Lambda \mapsto \mathfrak{G}_{\alpha},$$
$$\alpha \leq \beta \mapsto \prod_{\alpha,\beta} : \mathfrak{G}_{\beta} \to \mathfrak{G}_{\alpha}$$

In terms of predicate calculus, a projective system of e-structures is a set S together with the following data:

(i) A subset Λ of S and a directed partial order \leq on Λ .

(ii) Some subsets G, X_1, \ldots, X_e of S such that S is the disjoint union $\Lambda \dot{\cup} G \dot{\cup} \bigcup_{i=1}^e X_i$.

(iii) A binary relations on S which defines a map $s: G \cup \bigcup_{i=1}^{e} X_i \to \Lambda$ in such a way that the restriction maps $s_0: G \to \Lambda$, $s_i: X_i \to \Lambda$, i = 1, ..., e are onto; denote $G_{\alpha} = s_0^{-1}(\alpha), X_{i,\alpha} = s_i^{-1}(\alpha), i = 1, ..., e, \alpha \in \Lambda$.

(iv) A ternary relation on S which defines for each $\alpha \in A$ a group law \cdot on G_{α} .

(v) A ternary relation on S which defines for each $\alpha \in \Lambda$ some maps $X_{i,\alpha} \times G_{\alpha} \to X_{i,\alpha}$, i = 1, ..., e in such a way that $\mathfrak{G}_{\alpha} = (G_{\alpha}; X_{1,\alpha}, ..., X_{e,\alpha})$ becomes an *e*-structure.

(vi) A binary relation on S which defines for arbitrary $\alpha, \beta \in \Lambda, \alpha \leq \beta$, an epi of *e*-structures $\prod_{\alpha,\beta} : \mathfrak{G}_{\beta} \to \mathfrak{G}_{\alpha}$, in such a way that the maps $\alpha \mapsto \mathfrak{G}_{\alpha}$ and $\alpha \leq \beta \mapsto \prod_{\alpha,\beta}$ define a contravariant functor \mathfrak{G} on (Λ, \leq) with values in the category of *e*-structures with epis.

Let L_e be the first-order language for such structures. Clearly the class of projective systems of *e*-structures is axiomatizable in L_e by finitely many VA-sentences. Note that an L_e -embedding doesn't define always a morphism of projective systems.

Adjoin to L_e unary predicates R_n for all positive integers n to get a language L'_e .

Definition. A stratified projective system of e-structures is an L'_e -structure $(S; R_n, n \ge 1)$ where S is a projective system of e-structures (seen as an L_e -structure) and for each positive integer n,

$$R_n = \Lambda^{(n)} \cup \bigcup_{\alpha \in \Lambda^{(n)}} \left(G_\alpha \bigcup \bigcup_{i=1}^e X_{i,\alpha} \right), \quad \text{with } \Lambda^{(n)} = \{ \alpha \in \Lambda \mid (G_\alpha : 1) \le n \}.$$

The rank of an element $a \in S$ is the smallest $n \in \mathbb{N}$, if such n exists, subject to $a \in R_n$. Otherwise we say that a has infinite rank.

Definition. The ranked part $S^{(\omega)}$ of S is the L'_e -substructure of S containing only the elements of S with finite rank.

If $S^{(\omega)}$ is non-empty, then $S^{(\omega)}$ represents the maximal projective system (not necessarily directed) of finite *e*-structures contained in S.

Definition. A stratified projective system S is ranked if $S = S^{(\omega)}$, i.e. the L'_e -structure S represents a directed projective system of finite *e*-structures.

Definition. A stratified projective system S is *complete* if the projective system of finite *e*-structures represented by $S^{(\omega)}$ is directed and complete (see (1.2)), i.e. the next conditions are satisfied:

(i) For n≥1, α∈Λ⁽ⁿ⁾ and N a normal subgroup of G_α with σ(x)∉N for x∈ ∪_{i=1}^e X_{i,α}, there exists uniquely β∈Λ such that β≤α and N=Ker Π_{β,α}.
(ii) For n≥1, α, β∈Λ⁽ⁿ⁾ there is γ∈Λ^(n²) such that α≤γ and β≤γ.

The class of complete projective systems is L'_e -axiomatizable.

It follows that the category of complete ranked projective systems with L'_e embeddings may be identified with the category *e*-**CPSI** introduced in (1.2), the dual of *e*-**PROFINE**, by (1.2.1). We now use the duality (1.2.1) to extend the cologic for profinite groups developed in [7, §2] to a cologic for profinite *e*-structures.

We work with a fragment of the logic L'_e . The set of bounded L'_e -formulas is defined as the smallest set of L'_e -formulas containing the atomic formulas, closed under logical connectives, and closed under

 $\Phi \mapsto (\mathcal{I}x)(R_n(x) \Lambda \phi)$

where $n \in \mathbb{N}$ and x is a variable.

The next lemma is immediate.

2.1. Lemma. Let S be a stratified projective system, $\phi(x_1, \ldots, x_m)$ a bounded L'_e -formula, and $a_1, \ldots, a_m \in S^{(\omega)}$. Then

$$S \vDash \Phi(a_1, \ldots, a_m)$$
 iff $S^{(\omega)} \vDash \phi(a_1, \ldots, a_m)$.

Definitions. (a) A coformula (consentence) for profinite *e*-structures is a bounded L'_e -formula (L'_e -sentence).

(b) For an L'_e -structure S, the language $L'_e(S)$ is the augmentation of L'_e by constants for S. We get the obvious notion of bounded $L'_e(S)$ -formula.

(c) A coformula over a profinite *e*-structure **G** is a bounded $L'_e(S(G))$ -formula (see (1.2) for definition of the functor **S**).

(d) Let $\phi(x_1, ..., x_m)$ be a coformula over **G** and let $a_1, ..., a_m \in S(G)$. **G** cosatisfies $\phi(a_1, ..., a_m)$ (written $\mathbf{G} = \phi(a_1, ..., a_m)$) if $S(\mathbf{G}) \models \phi(a_1, ..., a_m)$.

(e) The *cotheory* of **G** (written Coth(G)) is the set of all cosentences cosatisfied by **G**.

(f) **G** and **H** are *coequivalent* if Coth(G) = Coth(H).

(g) An epi $\varphi: \mathbf{G} \to \mathbf{H}$ is coelementary if the corresponding L'_e -embedding $S(\varphi): S(\mathbf{H}) \to S(\mathbf{G})$ is b-elementary, i.e. $S(\varphi)$ preserves bounded $L'_e(S(\mathbf{H}))$ -sentences.

3. Co-ultraproducts of profinite e-structures

Let $(\mathbf{G}_{\lambda})_{\lambda \in \Gamma}$ be a family of profinite *e*-structures and *D* be an ultrafilter on Γ . For each $\lambda \in \Gamma$, $\Lambda_{\lambda} = \Lambda(\mathbf{G}_{\lambda})$ is the set of open normal subgroups *N* of G_{λ} for which $\sigma(x) \notin N$ for $x \in \bigcup_{i=1}^{e} X_i(\mathbf{G})$. If $N \in \Lambda_{\lambda}$, then \mathbf{G}_{λ}/N is the finite quotient *e*-structure of \mathbf{G}_{λ} determined by *N*. Λ_{λ} is partially ordered by the relation $N \leq N'$ iff $N' \subset N$.

Form the L'_e -structure $\prod_{\lambda \in \Gamma} S(\mathbf{G}_{\lambda})/D$. This ultraproduct is a complete stratified projective system of (discrete) *e*-structures, but is not necessarily ranked. In a functorial setting, $\prod_{\lambda \in \Gamma} S(\mathbf{G}_{\lambda})/D$ is a contravariant functor defined on the directed partially ordered set $\prod_{\lambda \in \Gamma} (\Lambda_{\lambda}, \leq)/D$ with values in the category of (discrete) *e*-structures with epis, defined on objects as follows:

$$(N_{\lambda})/D \mapsto \prod_{\lambda \in \Gamma} (\mathbf{G}_{\lambda}/N_{\lambda})/D.$$

Denote by $\prod^{\omega} S(\mathbf{G}_{\lambda})/D$ the ranked part $(\prod S(\mathbf{G}_{\lambda})/D)^{(\omega)}$ of $\prod S(\mathbf{G}_{\lambda})/D$. Then $\prod^{\omega} S(\mathbf{G}_{\lambda})/D$ is a (directed) complete projective system of finite *e*-structures. The next lemma follows easily from (2.1) and Løs' Theorem.

3.1. Lemma. For each bounded L'_e -formula $\phi(x_1, ..., x_m)$ and arbitrary $f_1, ..., f_m \in \prod S(\mathbf{G}_{\lambda})$ with $f_1/D, ..., f_m/D \in \prod^{\omega} S(\mathbf{G}_{\lambda})/D$, the next statements are equivalent:

(i) $\prod^{\omega} \mathbf{S}(\mathbf{G}_{\lambda})/D \models \phi(f_1/D, \dots, f_m/D),$

(ii)
$$\{\lambda \in \Gamma \mid \mathbf{S}(\mathbf{G}_{\lambda}) \models \phi(f_1(\lambda), \dots, f_m(\lambda))\} \in D.$$

Define the co-ultraproduct $\prod^{\omega} G_{\lambda}/D$ as the profinite *e*-structure $G(\prod^{\omega} S(G_{\lambda})/D)$ corresponding by duality to the complete projective system of finite *e*-structures $\prod^{\omega} S(G_{\lambda})/D$. Moreover, we get obviously a covariant functor $\prod^{\omega}/D: e$ -**PROFIN**^{$\Gamma \rightarrow e$ -**PROFIN** inducing by restriction a covariant functor $\prod^{\omega}/D: e$ -**PROFINE** $^{\Gamma} \rightarrow e$ -**PROFINE**. For $G_{\lambda} = G$ for all $\lambda \in \Gamma$, we write $G^{\omega \Gamma}/D$ instead of $\prod^{\omega} G_{\lambda}/D$, and call this profinite *e*-structure the co-ultrapower of **G** w.r.t. the pair (Γ, D) . Thus we get a covariant functor ${}^{\omega\Gamma}/D: e$ -**PROFIN** $E \rightarrow e$ -**PROFIN** inducing by restriction a covariant functor ${}^{\omega\Gamma}/D: e$ -**PROFIN** $E \rightarrow e$ -**PROFINE**. The diagonal map $\Delta: S(G) \rightarrow S(G)^{\Gamma}/D$ induces by (3.1) a *b*-elementary map $\Delta: S(G) \rightarrow (S(G)^{\Gamma}/D)^{(\omega)}$ and by duality a coelementary epi $\nabla: G^{\omega\Gamma}/D \rightarrow G$.}

We end this section with a construction which is useful in Section 6. Let **G** be a profinite *e*-structure and let Γ be a cofinal subset of the directed partially ordered set $\Lambda(\mathbf{G})$ of open normal subgroups N of G with $\sigma(x) \notin N$ for $x \in \bigcup_{i=1}^{e} X_i(\mathbf{G})$. Obviously $\mathbf{G} \cong \lim_{N \in \Gamma} \mathbf{G}/N$. Consider the family of sets $Z_N = \{U \in \Gamma | N \leq U\} = \{U \in \Gamma | U \subset N\}$, for all $N \in \Gamma$. Since Γ is cofinal in $\Lambda(\mathbf{G})$, the family $(Z_N)_{N \in \Gamma}$ is a filter basis on Γ . Let D be an ultrafilter on Γ containing the Z_N 's for all $N \in \Gamma$. Consider the canonical epis $\pi_N : \mathbf{G} \to \mathbf{G}/N$ for $N \in \Gamma$ and define the L'_e -embedding $\lambda : \mathbf{S}(\mathbf{G}) \to \prod_{N \in \Gamma} \mathbf{S}(\mathbf{G}/N)/D$ induced by the canonical monotone map

$$\lambda': (\Gamma, \leq) \to \prod_{N \in \Gamma} \Lambda(\mathbf{G}/N)/D: \quad U \mapsto (UN/N)/D.$$

Clearly λ' is injective and for each $U \in \Gamma$, the canonical morphism $\mathbf{G}/U \rightarrow \prod_{N \in \Gamma} (\mathbf{G}/UN)/D$ is an isomorphism since $\prod_{N \in \Gamma} (\mathbf{G}/UN)/D \cong (\mathbf{G}/U)^{\Gamma}/D \cong \mathbf{G}/U$ as \mathbf{G}/U is finite.

The L'_e -embedding induces by restriction to ranked parts the L'_e -embedding

$$\lambda: \mathbf{S}(G) \to \prod_{N \in \Gamma}^{\omega} \mathbf{S}(G/N)/D.$$

By duality we get a canonical epi of profinite e-structures

$$\boldsymbol{G}(\lambda):\prod_{N\in\Gamma}^{\omega}(\mathbf{G}/N)/D\to\mathbf{G}$$

4. Projective profinite e-structures

A profinite e-structure G is projective if every diagram of profinite e-structures

with ψ epi, can be completed to a commutative diagram by a morphism $\theta: \mathbf{G} \to \mathbf{E}$. (We say that the extension problem (1) has a solution θ).

In the following we give a characterization of projective profinite e-structures.

4.1. Proposition. Let **G** be a profinite e-structure. The next statements are equivalent:

(i) **G** is projective.

(ii) Every epi $\psi : \mathbf{E} \to \mathbf{G}$ splits, i.e. there is $i : \mathbf{G} \to \mathbf{E}$ with $\psi i = \mathbf{1}_{\mathbf{G}}$.

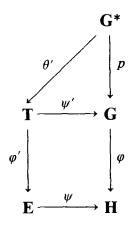
(iii) For each $epi \ \psi : \mathbf{E} \to \mathbf{G}$ there exist a coelementary $epi \ p : \mathbf{G}^* \to \mathbf{G}$ and a morphism $\theta : \mathbf{G}^* \to \mathbf{E}$ such that $p = \psi \theta$.

(iv) Every extension problem (1) with φ, ψ epis and **E** finite has a solution θ : $\mathbf{G} \rightarrow \mathbf{E}$.

Proof. (i) \rightarrow (ii) is trivial.

(ii) \rightarrow (iii) is immediate. Take $G^* = G$ and $p = 1_G$.

(iii) \rightarrow (iv) Consider the diagram (1) with φ, ψ epis, E finite. By assumption we get a commutative diagram



where $(\mathbf{T}; \psi', \varphi')$ with ψ', φ' epis is the pullback of the pair (φ, ψ) and p is a coelementary epi. Now, the existence of a solution θ for the extension problem (1) is obviously equivalent to the fact that **G** cosatisfies certain cosentence ϕ over **G**. Since $\varphi'\theta'$ is a solution of the extension problem derived from (1)

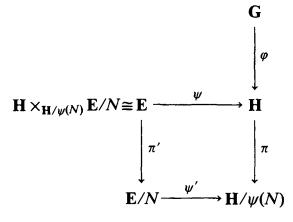


it follows G*=φ. As p is a coelementary epi we get finally G=φ.
(iv)→(i). First observe that (iv) is equivalent with the next statement.
(iv') Every extension problem (1) with ψ epi, E finite has a solution. Indeed it suffices to apply (iv) to the extension problem

$$\begin{array}{c}
\mathbf{G} \\
\downarrow \varphi \\
\varphi(\mathbf{H}) \times_{\mathbf{H}} \mathbf{E} \xrightarrow{\psi'} \varphi(\mathbf{H})
\end{array}$$

where the projection ψ' is epi since ψ is so.

Next consider the diagram (1) with ψ epi and assume that the kernel A of the epi $\psi: E \to H$ is finite. As A is a closed normal subgroup of E, there is an open normal subgroup N of E with $N \cap A = 1$. We may assume $\psi(N) \in \Lambda(\mathbf{H})$, i.e. $\sigma(x) \notin N$ for all $x \in \bigcup_{i=1}^{e} X_i(\mathbf{H})$. We get the canonical commutative diagram



Since \mathbf{E}/N is finite, we get by (iv') some $\theta': \mathbf{G} \to \mathbf{E}/N$ with $\pi \varphi = \psi' \theta'$. By universality of pullbacks, there is uniquely $\theta: \mathbf{G} \to \mathbf{E}$ with $\varphi = \psi \theta$ and $\theta' = \pi' \theta$.

Finally, consider an arbitrary diagram (1) with ψ epi, and let S be the set of pairs (N, λ) , where N is a closed subgroup of $A = \text{Ker } \psi$ which is normal in E and $\lambda : \mathbf{G} \to \mathbf{E}/N$ is a morphism such that $\varphi = \psi_N \lambda$, with $\psi_N : \mathbf{E}/N \to \mathbf{H}$ induced by ψ . The set S is non-empty since $(A, \varphi) \in S$. Define a partial order on S by: $(N_1, \lambda_1) \leq (N_2, \lambda_2)$ iff $N_2 \subset N_1$ and $\lambda_1 = \pi_{N_2, N_1} \lambda_2$, where $\pi_{N_2, N_1} : \mathbf{E}/N_2 \to \mathbf{E}/N_1$ is canonic. S is inductive w.r.t. the order \leq . Let (N, λ) be a maximal pair in S. If $N \neq 1$, then there exists by [18, Ch.I, Lemma 5], a proper open subgroup N' of N which is normal in E. Then N/N' is finite and so there is $\lambda' : \mathbf{G} \to \mathbf{E}/N'$ with $\lambda = \psi'\lambda'$, where $\psi' : \mathbf{E}/N' \to \mathbf{E}/N$ is canonic. We get $(N', \lambda') \in S$ and $(N', \lambda') > (N, \lambda)$ contrary to maximality of (N, λ) . Consequently N = 1 and $\varphi = \psi\lambda$. \Box

Remark. It is shown in [5, Theorem 3.1] that the statements (i)-(iv) above are also equivalent with the following one.

(v) Every extension problem (1), with E finite, ψ Frattini cover of H (i.e. there is no proper sub-*e*-structure E' of E such that the restriction $\psi/E': E' \rightarrow H$ is epi) and $A = \text{Ker } \psi$ abelian minimal normal subgroup of E, has a solution.

It is obtained in this way a suitable generalization of a well known characterization of projective profinite groups [12, Proposition 1].

We end this section with a lemma which is useful in Section 6.

4.2. Lemma. Let G be a projective profinite e-structure. Then \mathbb{Z}_2 is a quotient e-structure of G.

Proof. For all i = 1, ..., e, fix some $x_i \in X_i(\mathbf{G})$, and let $\sigma_i = \sigma(x_i)$. Let \mathbf{E} be the profinite *e*-structure with underlying profinite group $E = G \times \mathbb{Z}/2\mathbb{Z}$, and *E*-sets $X_i(\mathbf{E}) = H_i \setminus E$ where H_i is the cyclic group of order 2 of *E* generated by the involution $(\sigma_i, 1 + 2\mathbb{Z}), i = 1, ..., e$. The action of *E* on $X_i(\mathbf{E})$ is given by: $(H_i(g, \tau), (g', \tau')) \mapsto$ $H_i(gg', \tau + \tau')$, for $g, g' \in G$, $\tau, \tau' \in \mathbb{Z}/2\mathbb{Z}$. The profinite *e*-structure \mathbf{E} with the epis $p_1: \mathbf{E} \to \mathbf{G}, p_2: \mathbf{E} \to \mathbb{Z}_2$ given by $p_1^0(g, \tau) = g, p_2^0(g, \tau) = \tau, p_1^i(H_i(g, \tau)) = x_i^g,$ $p_2^i(H_i(g, \tau)) = *, i = 1, ..., e$, is a direct product of \mathbf{G} and \mathbb{Z}_2 . As \mathbf{G} is projective there is a mono $\eta: \mathbf{G} \to \mathbf{E}$ splitting p_1 , i.e. $p_1\eta = 1_{\mathbf{G}}$. Thus we get a morphism $p_2\eta: \mathbf{G} \to \mathbb{Z}_2$. Since the morphisms of *e*-structures taking values in \mathbb{Z}_2 are epis, we conclude that \mathbb{Z}_2 is a quotient *e*-structure of \mathbf{G} . \Box

5. From e-fold ordered fields to profinite e-structures

Let $\mathbf{K} = (K; P_1, ..., P_e)$ be an *e*-field, $e \ge 1$, and *L* be a Galois extension of *K* such that *L* is not formally real (fr) over the ordered fields (K, P_i) , i = 1, ..., e. We naturally assign to the pair (\mathbf{K}, L) a profinite *e*-structure $\mathbf{G}(L/\mathbf{K}) = (G(L/K); X_1(L/\mathbf{K}), ..., X_e(L/\mathbf{K}))$ called the *Galois e-structure* of L/\mathbf{K} . The underlying group of $\mathbf{G}(L/\mathbf{K})$ is the Galois group G(L/K) of *L* over *K*, $X_i(L/\mathbf{K})$ is the set of pairs $(\sigma, Q), \sigma$ an involution of G(L/K), Q an order extending P_i on the fixed field $L(\sigma)$, and the action $X_i(L/\mathbf{K}) \times G(L/K) \to X_i(L/\mathbf{K})$ is given by $((\sigma, Q), \tau) \mapsto (\sigma^{\tau}, Q^{\tau})$ with $\sigma^{\tau} = \tau^{-1} \sigma \tau, Q^{\tau} = \{a^{\tau} := \tau(a) \mid a \in Q\}$. It follows easily that the invariant subgroup of some $(\sigma, Q) \in X_i(L/\mathbf{K})$ is the projective limit $\lim_{t \to \infty} \mathbf{G}(E/\mathbf{K})$ of finite *e*-structures, where *E* ranges over all finite Galois extensions of *K* with $E \subset L$ and *E* is not fr over $(K, P_i), i = 1, \ldots, e$.

In particular, if $L = \tilde{K}$ is the algebraic closure of K, we get the *absolute Galois e-structure* $\mathbf{G}(\mathbf{K}) = \mathbf{G}(\tilde{K}/\mathbf{K})$ of the *e*-field **K**. Note that $X_i(\mathbf{K}) = X_i(\tilde{K}/\mathbf{K})$ is identified with the set of involutions σ of $G(K) = G(\tilde{K}/K)$ for which the fixed field $\tilde{K}(\sigma)$ is a ral closure of (K, P_i) , i = 1, ..., e.

Denote by F_e the first-order language of *e*-fields. F_e is an extension of the language (+, -, .., 0, 1) of rings with *e* unary predicates $\pi_1, ..., \pi_e$ standing for orders.

A basic fact is that the cotheory of G(K), K an *e*-field, is interpretable in K, as follows from the next analogue of [7] Lemma 17.

5.1. Proposition. There is a recursive map $\phi \mapsto \hat{\phi}$ from cosentences to F_e -sentences such that for every cosentence ϕ and every e-field **K**, $\mathbf{G}(\mathbf{K}) = \phi$ iff $\mathbf{K} \models \hat{\phi}$.

Proof. The statement is a consequence of the following facts:

(1) Under the Galois duality $L \mapsto G(L)$, the following objects are in 1-1 correspondence: finite Galois extension L/K, with [L:K] = m and L not fr over $(K, P_i), i = 1, ..., e$, and open normal subgroups $N \in \Lambda(\mathbf{G}(K))$ (i.e. $N \cap \bigcup_{i=1}^{e} X_i(\mathbf{K})$ is empty) with (G(K):N) = m.

(2) Coding finite extensions of K in K: For each m, let us fix the basis (b_1, \ldots, b_m) of K^m by $b_i = (0, \ldots, 1, 0, \ldots, 0)$ with 1 on the *i*th place. Then a point $(c_{ijk})_{i,j,k \le m} = c \in K^{m^3}$ uniquely determines an m-dimensional K-algebra Ac. It follows via the splitting field criterion that the c such that Ac is a Galois extension of K form a first-order definable subset of K^{m^3} . Moreover, the $(c, d) \in K^{m^3} \times K^{n^3}$ for which Ac, Ad are Galois extensions of K and Ac is K-embeddable in Ad form a first-order definable subset of $K^{m^3} \times K^{n^3}$.

(3) For each finite *e*-structure **G**, the $c \in K^{m^3}$ for which Ac is a Galois extension of K, not fr over (K, P_i) , i = 1, ..., e, and $\mathbf{G}(Ac/\mathbf{K}) \cong \mathbf{G}$ form an F_e -definable subset of K^{m^3} . Indeed, the condition "Ac is not fr over (K, P_i) " is equivalent to the existence of some $z \in Ac$ such that the minimal polynomial of z over K has no roots in the real closure $(\overline{K}, \overline{P_i})$ of (K, P_i) . On the other hand the condition "the subfield Ad of Ac as above is maximal with the property that Ad is fr over (K, P_i) and there are k distinct orders extending P_i on Ad" is equivalent to the fact that [Ac:Ad] = 2, Ad = K[z] and the minimal polynomial of z over K has k distinct roots in $(\overline{K}, \overline{P_i})$. Note that the statements above may be translated in the language of $(K; P_1, ..., P_e)$ thanks to elimination of quantifiers for real closed fields. \Box

The next result is a generalization of [7, Lemma 19].

5.2. Lemma. Let D be an ultrafilter on the index set Γ , and $\mathbf{K}_{\gamma} = (K_{\gamma}; P_{1,\gamma}, \dots, P_{e,\gamma})$, $\gamma \in \Gamma$, be e-fields. For each $\gamma \in \Gamma$, let L_{γ} be a Galois extension of K_{γ} such that L_{γ} is not fr over $(K_{\gamma}, P_{i,\gamma})$, $i = 1, \dots, e$. Assume that there exists $m \in \mathbb{N}$ such that for almost all (relative to D) $\gamma \in \Gamma$, there exists a finite Galois extension M_{γ} of K_{γ} , contained in L_{γ} , which is not fr over $(K_{\gamma}, P_{i,\gamma})$, $i = 1, \dots, e$, with $[M_{\gamma}: K_{\gamma}] \leq m$.

Denote by $\mathbf{K} = (K; P_1, ..., P_e)$ the ultraproduct $\prod \mathbf{K}_{\gamma}/D$ and by L the algebraic closure of K in $\prod L_{\gamma}/D$. Then L is Galois over K and not fr over (K, P_i) , i = 1, ..., e, and $\mathbf{G}(L/\mathbf{K})$ is canonically isomorphic to the co-ultraproduct $\prod^{\alpha} G(L_{\gamma}/\mathbf{K}_{\gamma})/D$.

Proof. The statement follows from the next facts, which are consequences of Løs' theorem and elimination of quantifiers for real closed fields:

(1) A Galois extension of $\prod K_{\gamma}/D$ of degree *n*, contained in $\prod L_{\gamma}/D$, can be identified with some $\prod N_{\gamma}/D$, where N_{γ} is a Galois extension of K_{γ} , contained in L_{γ} , which is for almost all (relative to *D*) $\gamma \in \Gamma$ of degree *n* over K_{γ} .

(2) In the above, $\prod N_{\gamma}/D$ is not fr over (K, P_i) , i = 1, ..., e, iff N_{γ} is not fr over $(K_{\gamma}, P_{i,\gamma})$, i = 1, ..., e, for almost all $\gamma \in \Gamma$. In this case, the finite *e*-structure $\mathbf{G}(\prod N_{\gamma}/D | \mathbf{K})$ is naturally isomorphic to $\prod \mathbf{G}(N_{\gamma}/\mathbf{K}_{\gamma})/D$. \Box

5.3. Corollary. Let D be an ultrafilter on the index set Γ and \mathbf{K}_{γ} , $\gamma \in \Gamma$, be e-fields. Then $\mathbf{G}(\prod \mathbf{K}_{\gamma}/D)$ is canonically isomorphic to $\prod^{\omega} \mathbf{G}(\mathbf{K}_{\gamma})/D$.

6. Proof of the main results

In order to prove the two main results of the paper we need the following lemma, a non-trivial generalization of [11, Lemma 1.1], [3, II, Lemma 4.1].

6.1. Lemma. Let $\mathbf{K} = (K; P_1, ..., P_e)$ be an e-field, L a Galois extension of K which is not fr over (K, P_i) , i = 1, ..., e, \mathbf{G} a profinite e-structure and $\psi : \mathbf{G} \to \mathbf{G}(L/\mathbf{K})$ an epi. Then there exist an extension $\mathbf{E} = (E; Q_1, ..., Q_e)$ of \mathbf{K} , with E regular over K, a Galois extension F of E such that L is the algebraic closure of K in F (in particular, F is not fr over (E, Q_i) , i = 1, ..., e) and an isomorphism $\eta : \mathbf{G} \to \mathbf{G}(F/\mathbf{E})$ such that the next diagram is commutative

Proof. (a) First, let us consider the finite case, i.e. assume G(L/K) and G are finite. Let $U = \{u^g | g \in G\}$ be a set of |G| algebraically independent elements over K. The group G acts on U from the right in an obvious manner. It also acts on L through ψ by the formula $a^g = a^{\psi(g)}$. Consequently, G acts on the field of rational functions F = L(U). Let E be the fixed field of G in F. It follows that $E \cap L = K$ and LE is regular over L, as a subfield of a rational function field over L, and hence E is regular over K. Now let us identify the group G with G(F/E) in the obvious manner and the group epi $\psi : G \to G(L/K)$ with the restriction res : $G(F/E) \to G(L/K)$. It remains to show that there are some orders Q_i of E such that Q_i extends P_i , i = 1, ..., e, and the identity group isomorphism 1_G extends to an isomorphism $\eta : G \to G(F/E)$ of e-structures in such a way that the diagram (1) commutes.

Fix some $x_i \in X_i(\mathbf{G})$, i = 1, ..., e, and let $\sigma_i = \sigma(x_i) \in G = G(F/E)$. Then $\psi(x_i) = (\tau_i, P'_i)$, where τ_i is an involution of G(L/K) which coincides with the restriction of σ_i on L and P'_i is an order extending P_i on the fixed field $L(\tau_i)$ of τ_i in L. So it suffices to extend P'_i to an order Q'_i on the fixed field $F(\sigma_i)$ of σ_i in F, take the restriction Q_i of Q'_i on E and define

$$\eta(x_i^{\lambda}) = (\sigma_i^{\lambda}, Q_i'^{\lambda}) \text{ for } \lambda \in G = G(F/E), i = 1, \dots, e.$$

Fix some $i \in \{1, ..., e\}$ and let $M = L(\tau_i)$. Then there exists $a \in L \setminus M$ such that L = M[a] and $-a^2 \in P'_i$. σ_i acts obviously on the field of rational functions M(U). Let $N \supset M$ be the fixed field of σ_i in M(U). First let us show that $F(\sigma_i) = N[a(u^1 - u^{\sigma_i})]$. Each element of F can be uniquely written in the form f + af' with $f, f' \in M(U)$. Let $f + af' \in F(\sigma_i)$. Then $f + af' = (f + af')^{\sigma_i} = f^{\sigma_i} - af'^{\sigma_i}$, and hence $f^{\sigma_i} = f$ and $f'^{\sigma_i} = -f'$. Thus we get

$$f + af' = f + a(u^1 - u^{\sigma_i})(f'/(u^1 - u^{\sigma_i})) \in N[a(u^1 - u^{\sigma_i})]$$

since $f \in N$ and $f'/(u^1 - u^{\sigma_i}) \in N$.

In order to extend P_i to an order Q'_i of $F(\sigma_i)$, it suffices to extend P'_i to an order Q''_i of N in such a way that $(u^1 - u^{\sigma_i})^2 \in -Q''_i$. For, if so, then $(a(u^1 - u^{\sigma_i}))^2 \in Q''_i$, i.e. $F(\sigma_i)$ is fr over (N, Q''_i) .

Consider the tower of fields

$$M \subset S \subset N \subset M(U)$$

where

$$S = M(u^{\lambda} + u^{\lambda \sigma_i}, u^{\lambda} u^{\lambda \sigma_i} | \lambda \in G) = M(u^{\lambda} + u^{\lambda \sigma_i}, (u^{\lambda} - u^{\lambda \sigma_i})^2 | \lambda \in G).$$

As the transcendency degree of M(U)/M is |G| and $M(U) = S[u^{\lambda} | \lambda \in G]$ with the u^{λ} algebraic over S, it follows that S/M is purely transcendental and the set $\{u^{\lambda} + u^{\lambda\sigma_i}, (u^{\lambda} - u^{\lambda\sigma_i})^2 | \lambda \in G\}$ is a transcendency basis of M(U)/M. Consequently, there exists some order Q''' of S such that Q''' extends P'_i and $(u^{\lambda} - u^{\lambda\sigma_i})^2 \in -Q'''$ for all $\lambda \in G$. Let Q''' be such an order. It remains to show that N is fr over (S, Q''').

Let $N' = S[(u^{\lambda} - u^{\lambda \sigma_i})(u^1 - u^{\sigma_i}) | \lambda \in G]$. Let us show that N' = N. The inclusion $N' \subset N$ is trivial, so it remains to verify that [M(U):N'] = 2. Since $[N'[u^1]:N'] = 2$, it suffices to show that $M(U) = N'(u^1)$. However the latter equality is a consequence of the identities $u^{\lambda} = \alpha_{\lambda} + \beta_{\lambda}u^1$, $\lambda \in G$, with

$$\beta_{\lambda} = \frac{u^{\lambda} - u^{\lambda\sigma_{i}}}{u^{1} - u^{\sigma_{i}}} = \frac{(u^{\lambda} - u^{\lambda\sigma_{i}})(u^{1} - u^{\sigma_{i}})}{(u^{1} - u^{\sigma_{i}})^{2}} \in N',$$

$$\alpha_{\lambda} = \frac{u^{1}u^{\lambda\sigma_{i}} - u^{\sigma_{i}}u^{\lambda}}{u^{1} - u^{\sigma_{i}}} = \frac{(u^{\lambda} + u^{\lambda\sigma_{i}}) - \beta_{\lambda}(u^{1} + u^{\sigma_{i}})}{2} \in N'.$$

Thus we get N' = N.

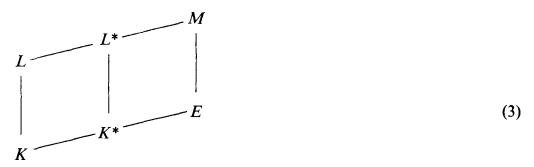
Let $\zeta_{\lambda} = (u^{\lambda} - u^{\lambda \sigma_i})(u^1 - u^{\sigma_i}), \lambda \in G$, and so $N = S[\zeta_{\lambda} | \lambda \in G]$. Let us show that the degree of $S[\zeta_{\lambda}] = S[\zeta_{\lambda \sigma_i}]$ over S is 2 for $\lambda \neq 1$, $\lambda \neq \sigma_i$. Obviously, $\zeta_{\lambda}^2 \in S$. On the other hand, $\zeta_{\lambda} \notin S$ for $\lambda \neq 1$, $\lambda \neq \sigma_i$, since $u^{\lambda} - u^{\lambda \sigma_i}$ and $u^1 - u^{\sigma_i}$ are algebraically independent over M and the polynomial $W^2 - YZ \in M(Y, Z)[W]$ is irreducible. As $\zeta_{\lambda}^2 = [-(u^{\lambda} - u^{\lambda \sigma_i})^2][-(u^1 - u^{\sigma_i})^2] \in Q^{m}$, the order Q^{m} of S can be extended to an order of N, as contended.

(b) Now let as consider the general case. Let Γ be the subset of $\Lambda(\mathbf{G})$ consisting of those N with $\psi(N) \in \Lambda(\mathbf{G}(L/\mathbf{K}))$, i.e. the fixed field L_N of $\psi(N)$ in L is a finite Galois extension of K which is not fre over (K, P_i) , i = 1, ..., e. Γ is cofinal in $\Lambda(\mathbf{G})$,

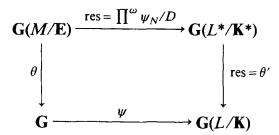
$$\mathbf{G} \cong \lim_{N \in \Gamma} \mathbf{G}/N, \qquad \mathbf{G}(L/\mathbf{K}) \cong \lim_{N \in \Gamma} \mathbf{G}(L_N/\mathbf{K}) \text{ and } \psi = \lim_{N \in \Gamma} \psi_N,$$

where the epis $\psi_N : \mathbf{G}/N \to \mathbf{G}(L_N/\mathbf{K})$ are induced by ψ . Using the construction from Section 3 we get a commutative diagram of epis for a suitable ultrafilter D on Γ

On the other hand, by the first part of the proof, we get for each $N \in \Gamma$ an extension $\mathbf{E}_N = (E_N; Q_{1,N}, \dots, Q_{e,N})$ of \mathbf{K} with E_N regular over K, and a finite Galois extension F_N of E_N in such a way that L_N is the algebraic closure of K in E_N , the *e*-structure $\mathbf{G}(F_N/\mathbf{E}_N)$ is identified with \mathbf{G}/N and the epi ψ_N is identified with the restriction res: $\mathbf{G}(F_N/\mathbf{E}_N) \rightarrow \mathbf{G}(L_N | \mathbf{K})$. Let $\mathbf{K}^* = (K^*; P_1^*, \dots, P_e^*) = \mathbf{K}^{\Gamma}/D$, $\mathbf{E} = (E; Q_1, \dots, Q_e) = \prod \mathbf{E}_N/D$, L^* be the algebraic closure of K^* in $\prod L_N/D$ and M be the algebraic closure of E in $\prod E_N/D$. Consider the diagram of fields



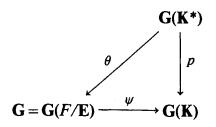
We get easily that the extensions E/K, E/K^* , M/L and M/L^* are regular. Fix some U in Γ and let (G: U) = m. Since, by choice of D, $\{V \in \Gamma | U \leq V\} \in D$ it follows that for almost all $N \in \Gamma$, F_N contains a subfield which is Galois over E_N , not fr over $(E_N, Q_{i,N})$, i = 1, ..., e, and of degree over E_N bounded by m. Consequently, by (5.2), the Galois extension M of E is not fr over (E, Q_i) , i = 1, ..., e, and G(M/E) is canonically isomorphic to $\prod^{\omega} G(F_N/E_N)/D \cong \prod^{\omega} (G/N)/D$. Similarly, the Galois extension L^* of K^* is not fr over (K^*, P_i^*) , i = 1, ..., e and $G(L^*/K^*)$ is canonically isomorphic to $\prod^{\omega} G(L_N/K)/D$. From (2) and (3) we get the commutative diagram of epis



It remains to take F the fixed field of Ker θ in M/E to get a Galois extension F of E such that L is the algebraic closure of K in F and G(F/E), res: $G(F/E) \rightarrow G(L/K)$ are respectively identified with G and ψ , as contended. \Box

6.2. Proof of Theorem I. Let $\mathbf{K} = (K; P_1, \dots, P_e)$ be a prc *e*-field. We have to show that $\mathbf{G}(\mathbf{K})$ is projective. According to (4.1) it suffices to show that for every epi

 $\psi: \mathbf{G} \to \mathbf{G}(\mathbf{K})$ there exist a coelementary epi $p: \mathbf{T} \to \mathbf{G}(\mathbf{K})$ and a morphism $\theta: \mathbf{T} \to \mathbf{G}$ such that $p = \psi \theta$. Given an epi $\psi: \mathbf{G} \to \mathbf{G}(\mathbf{K})$ it follows by (6.1) that there exist an extension $\mathbf{E} = (E; Q_1, \dots, Q_e)$ of \mathbf{K} , with E regular over K and a subfield F of the algebraic closure \tilde{E} of E such that the algebraic closure \tilde{K} of K is contained in F, F is Galois over E, and $\mathbf{G}(F/\mathbf{E})$, res: $\mathbf{G}(F/\mathbf{E}) \to \mathbf{G}(\mathbf{K})$ are respectively identified with \mathbf{G} and ψ . Since, by assumption, \mathbf{K} is a prc *e*-field, it follows that \mathbf{K} is ec in \mathbf{E} and hence by Scott's lemma [6, Lemma 8.1.3, Corollary 9.3.11], \mathbf{E} can be embedded over \mathbf{K} into an elementary extension \mathbf{K}^* of \mathbf{K} . Thus we get the canonical commutative diagram of profinite *e*-structures



where the restriction θ is not necessarily an epi. Finally note that the restriction p is a coelementary epi according to (5.1). \Box

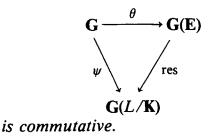
Remark. A tentative to prove the theorem above in the special case e = 1 is due to McKenna [15] but unfortunately the proof of [15, Theorem 1.1] contains a mistake, though the respective statement is correct. The error occurs at page 1.6, where the Hoschild-Serre sequence contains the incorrect term $H^2(N, u)$ instead of the correct one $H^1(\bar{\pi}, H^1(G_K(2), u))$. By contrast with McKenna's intricate approach which requires Galois cohomology, the proof given here is quite simple and of model-theoretic nature.

Finally let us prove the second main result of the paper, which gives a characterization of profinite e-structures which can be realized as absolute Galois estructures over prc e-fields.

First we prove a little more general result.

6.3. Theorem. Let $\mathbf{K} = (K; P_1, ..., P_e)$ be an e-field, L a Galois extension of K such that L is not fr over (K, P_i) , i = 1, ..., e, \mathbf{G} a profinite e-structure and $\psi : \mathbf{G} \rightarrow \mathbf{G}(L/\mathbf{K})$ an epi. Then the next statements are equivalent:

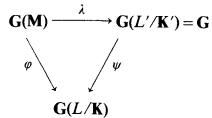
(i) There exist an e-field extension \mathbf{E} of \mathbf{K} and an isomorphism $\theta: \mathbf{G} \to \mathbf{G}(\mathbf{E})$ such that \mathbf{E} is a prc e-field, $E \cap L = K$ and the diagram



(ii) G is projective.

Proof. (i) \rightarrow (ii) follows by (6.2).

(ii) \rightarrow (i). Assume **G** is projective. By (6.1), there exist a regular *e*-field extension **K**' of **K** and a Galois extension L' of K' such that L is the algebraic closure of K in L' and the restriction res : $\mathbf{G}(L'/\mathbf{K}') \rightarrow \mathbf{G}(L/\mathbf{K})$ is identified with the epi ψ . According to [17, Theorem 1.1] there exists a regular *e*-field extension $\mathbf{M} = (M; Q_1, \dots, Q_e)$ of **K**' such that **M** is a prc *e*-field. Consider the commutative diagram

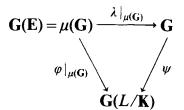


where λ and φ are restriction epis. As **G** is projective, there exists a mono $\mu: \mathbf{G} \to \mathbf{G}(\mathbf{M})$ splitting λ . Note that for each involution τ of *G* there is some $x \in \bigcup_{i=1}^{e} X_i(\mathbf{G})$ with $\tau = \sigma(x)$. Indeed $\mu(\tau)$ is an involution of G(M) and hence $\mu(\tau) \in \bigcup_{i=1}^{e} X_i(\mathbf{M})$ since Q_1, \ldots, Q_e are the only orders of *M*. Assume $\mu(\tau) \in X_i(\mathbf{M})$. Then we get

$$\tau = \lambda^{0}(\mu(\tau)) = \lambda^{0}(\sigma(\mu(\tau))) = \sigma(\lambda^{i}(\mu(\tau))).$$

Thus $\tau = \sigma(x)$ with $x = \lambda^{i}(\mu(\tau)) \in X_{i}(\mathbf{G})$.

Let $E \subset \tilde{M}$ be the fixed field of $\mu(G)$. Since $\mu(G)$ is a sub-*e*-structure of G(M), we get $\mu(X_i(G)) = \{\sigma_i^\tau | \tau \in \mu(G)\}$ for some involution $\sigma_i \in \mu(G)$ for which $\tilde{M}(\sigma_i)$ is a real closure of (M, Q_i) , i = 1, ..., e. Let $Q'_i = E \cap \tilde{M}(\sigma_i)^2$, i = 1, ..., e. Then $\mu(G)$ is identified with the absolute Galois *e*-structure of the *e*-field extension $\mathbf{E} = (E; Q'_1, ..., Q'_e)$ of \mathbf{M} . The remark above on the involutions of G implies that there are only e distinct orders on E, namely $Q'_1, ..., Q'_e$, extending respectively the orders $Q_1, ..., Q_e$ of the prc e-field \mathbf{M} . Since E is algebraic over the prc field M it follows by [17, Theorem 3.1] that E is prc too, and so \mathbf{E} is a prc *e*-field. Finally we get the commutative diagram



Obviously, $\varphi|_{\mu(G)}$ is epi, i.e. $E \cap L = K$, as contended. \Box

Remarks. (i) Taking in the statement above $L = \tilde{K}$ and $\psi : \mathbf{G} \to \mathbf{G}(\mathbf{K})$ an epi, it follows that the prc *e*-field **E** from (i) is regular over *K*.

(ii) It follows from the proof above that for each involution τ of a projective profinite *e*-structure **G** there is $x \in \bigcup_{i=1}^{e} X_i(\mathbf{G})$ with $\tau = \sigma(x)$.

The second main result of the paper is an immediate consequence of (6.3).

6.4. Proof of Theorem II. Let G be a profinite *e*-structure. If $G \cong G(K)$, K a prc *e*-field, then G is projective by Theorem I. Conversely, assume G is projective, and let K be an *e*-field and L = K(i), $i^2 = -1$. Since G is projective, we get by (4.2) an epi $\psi: G \rightarrow \mathbb{Z}_2 \cong G(L/K)$. Applying (6.3), we get a prc *e*-field E with $G(E) \cong G$. \Box

References

- [1] J. Ax, The elementary theory of finite fields, Annals of Math. 88 (1968) 239-271.
- [2] Ş. Basarab, Definite functions on algebraic varieties over ordered fields, Revue Roumaine Math. Pures Appl. 29 (7) (1984) 527-535.
- [3] Ş. Basarab, Some model theory for regularly closed fields, I, II, Report AI-FD018, Bucharest 1982.
- [4] Ş. Basarab, The elementary theory of pseudo real closed e-fold ordered fields, Report AI-FD032, Bucharest 1983.
- [5] Ş. Basarab, Profinite groups with involutions and pseudo real closed fields, Report AI-FD038, Bucharest 1983.
- [6] J.L. Bell and A.B. Slomson, Models and Ultraproducts: An Introduction (North-Holland, Amsterdam, 1971).
- [7] G. Cherlin, L. van den Dries and A. Macintyre, The elementary theory of regularly closed fields, Preprint.
- [8] Ju. Ershov, Regularly closed fields, Soviet Math. Dokl. 21 (2)(1980) 510-512.
- [9] Ju. Ershov, Regularly r-closed fields (Russian), Dokl. Akad. Nauk SSSR 266 (3) (1982) 538-540.
- [10] G. Frey, Pseudo algebraically closed fields with nonarchimedean real valuations, J. Algebra 26 (1973) 202-207.
- [11] M. Fried, D. Haran and M. Jarden, Galois stratification over Frobenius fields, Advances in Math., to appear.
- [12] K. Gruenberg, Projective profinite groups, J. London Math. Soc. 42 (1967) 155-165.
- [13] M. Jarden, The elementary theory of large e-fold ordered fields, Report 81-17, Tel-Aviv 1981.
- [14] K. McKenna, Pseudo henselian and pseudo real closed fields, Thesis, Yale.
- [15] K. McKenna, On the cohomology and elementary theory of a class of ordered fields, Preprint.
- [16] A. Lubotzky and L. van den Dries, Subgroups of free profinite groups and large subfields of \tilde{Q} , Israel J. Math. 39 (1981) 25-45.
- [17] A. Prestel, Pseudo real closed fields, Lecture Notes in Math. 782 (Springer, Berlin, 1981) 127-156.
- [18] J.P. Serre, Cohomologie Galoisienne, Lecture Notes in Math. 5 (Springer, Berlin, 1964).