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Introduction

In his celebrated paper [1] on the elementary theory of finite fields Ax considered
fields K with the property that every absolutely irreducible variety defined over K
has K-rational points. These fields have been later called pseudo algebraically closed
(pac) by Frey [10] and also regularly closed by Ershov [8], and extensively studied
by Jarden, Ershov, Fried, Wheeler and others, culminating with the fundamental
works [7] and [11].

The above definition of pac fields can be put into the following equivalent ver-
sion: K is existentially complete (ec), relative to the customary language of fields,
into each regular field extension of K. It has been this characterization of pac fields
which the author extended in [2] to ordered fields. An ordered field (K, <) is called
in [2] pseudo real closed (prc) if (K, <) is ec in every ordered field extension (L, <)
with L regular over K. The concept of prc ordered field has also been introduced

* The present paper is the contents of §1-3, §9-10 of the report [4] earlier submitted as a whole for
publication in J. Pure Appl. Algebra.

The author thanks very much the referee for suggesting him a better organization of the paper and
informing him about Ershov’s note [9] announcing certain results which are similar with some resuits
proved in §12-13 of [4].
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by McKenna in his thesis [14], by analogy with the original algebraic-geometric
definition of pac fields.

Recently, Prestel [17] introduced a very inspired concept which extends the con-
cept of a pac field as well as of a prc ordered field. According to [17], a field X is
said to be prc if K is ec, relative to field language, in every regular field extension
of K to which all orders of K extend.

A system K=(X; Py,...,P,), where K is a field, e is a positive integer and
P,,...,P, are orders of K (identified with the corresponding positive cones), is
called an e-fold ordered field (e-field). It turns out by [17, Theorem 1.7] that an e-
field X is ec, relative to the first-order language of e-fields, in every regular e-field
extension of K iff K is prc, P;# P; for i#j and K has exactly e orders. Let us call
such an e-field K a prc e-field.

It is well known that the absolute Galois group G(K) of a pac field X is a projec-
tive profinite group (see [1] for perfect pac fields). It is also known [16], [7, Proposi-
tion 38], that all projective profinite groups occur as G(K), K a pac field. The main
goal of the present paper is to prove that the statements above remain true for prc
e-fields X if we replace the absolute Galois group G(K) by a suitable generalization
G(K) called the absolute Galois e-structure of the e-field K, and projectivity for pro-
finite groups by projectivity for the so called profinite e-structures.

Theorem 1. Let K be a prc e-field. Then its absolute Galois e-structure G(K) is a pro-
Jective profinite e-structure.

Theorem II. The necessary and sufficient condition for a profinite e-structure G to
be realized as the absolute Galois e-structure over some prc e-field is that G is
projective.

In order to prove the theorems above we introduce and investigate in Sections 1-4
some group-theoretic objects called e-structures. Some basic facts concerning the
model theory of profinite e-structures are developed in Sections 2,3 on the line of
the cologic for profinite groups from [7]. The projective profinite e-structures are
characterized in Section 4.

Section 5 answers the question: what is the appropriate extension to the theory
of e-fields of the basic concept of Galois group from the field theory? [appropriate
in the sense that it must reflect the Galois group structure as well as the relation be-
tween this one and the orders of a given e-field]. The answer to this question is sug-
gested by the concept of order-pair introduced in [13]. It turns out that the suitable
group-theoretic concept for e-fields is the concept of profinite e-structure introduc-
ed in Section 1. To each e-field K we naturally assign a profinite e-structure G(K),
called the absolute Galois e-structure of K, in such a way that the elementary
statements about G(K) are interpretable in the first-order language of K.

Finally. the proofs of the main results stated above are given in Section 6.
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1. Profinite e-structures

1.1. Let us fix a natural number e. By an e-structure we mean a system G =
(G; X, ..., X,), where G is a group and the X;’s are non-empty G-sets satisfying
the next conditions:

(i) The actions X; X G—X;:(x,7)~x" are transitive, i.e. the X;’s are G-orbits.

(ii) For xe X;, i=1,...,e, the invariant subgroup Inv(x)={re G|x =x} is cyclic
of order 2.

If xe Uf=l X;, denote by a(x) the involution of G which generates Inv(x).

Given an e-structure G, we usually denote by G the underlying group of G and
by Xi(G), i=1,...,e, the corresponding G-sets.

A morphism of e-structures from G to H is an (e+ 1)-tuple ¢ =(¢° o', s 09),
where ¢*: G- H is a group morphism and ¢*: Xi(G)~X;(H), i=1,...,e, are maps
subject to the following conditions: ’

() ') =0'®"@  for xe X,(G), 1€G.

(i) @°(6(x) =0(p'(x)) for xe X(G).

Usually we denote by the same letter, say ¢, the maps ¢ ¢!, ..., ¢° defining a
morphism of e-structures.

Call ¢:G—H a mono (epi) if ¢°: G—H is injective (surjective).

A sub-e-structure of G is an e-structure H, where H is a subgroup of G and
X;(H) is a subset of X;(G), i=1,...,e, subject to

(1)) There is x; € X;(G) such that o(x,)e H, i=1,...,e.

(i) X;(H)={x{|te H} with x; as above, and the action of & on X;(H) is in-
duced by the action of G on X;(G), i=1,...,e.

A quotient e-structure of G is an e-structure E where E=G/N for some normal
subgroup N of G with a(x) ¢ N for xe |J;_, X,(G), X;(E) = X,(G)/N is the quotient
set w.r.t. the next equivalence relation induced by N:

x~x" o (HreN)x'=x7,

for x,x’ € X;(G), i=1,..., e, and the actions of E on the X;(E)’s are induced by the
actions of G on the X;(G)’s.

If ¢:G—H is a morphism of e-structures, then the image ¢(G)=(p%(G);
0 (X1 (G)), ..., p°(X(G))) is a sub-e-structure of H and ¢(G)=G/Ker ¢°.

Let ¢:G—H, ¢': G'>H be morphisms of e-structures and assume that the sets
Xi(G) X x,m X;(G"), i=1,...,e, are non-empty. Then

G xy G'=(GXy G'; X,(G) X x,41) X1(G"), ..., Xo(G) X 10 Xo(G"))

with the canonical morphisms P:GXygG'—G, p':Gxyg G'~H’ is a pullback of
the pair (¢, ¢"). ,

An e-structure G is called finite (profinite) if the underlying group G is finite (pro-
finite). By morphisms, monos, epis of profinite e-structures we understand con-
tinuous morphisms, monos, epis. By a sub-e-structure H of a profinite e-structure
G we mean a sub-e-structure of G for which H is a closed subgroup of G.
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The simplest example of e-structure denoted by Z, has Z /27 as underlying group
which acts trivially on the singletons X;(Z,)={+), i=1,...,e. Z, has no proper sub-
e-structures and quotient e-structures.

1.2. Denote by e-FIN (e-PROFIN) the category of finite (profinite) e-structures. let
e-FINE (e-PROFINE) the subcategory of e-FIN (e-PROFIN) with the same objects,
but only with epis.

Now we extend the duality for profinite groups from [7, §2] to profinite e-
structures.

Definition. A (directed) projective system (of finite e-structures) is a contravariant
functor @ from a directed non-empty partial ordered set (A, <) to e-FINE:

aeA~O,,

a feA, asp, ~ ]’!} : @p— Y.

Definition. Let @ : (4, <)°—e-FINE and $: (I, <)°—e-FINE be projective systems.
A morphism from @ to 9 is a pair (¢, v), where ¢: (A, <)—({, <) is a monotone
map and y:9—® is a natural transformation such that for each a € A, the mor-
phism ¥, : 44— Y, is mono.

Definition. The projective system ®&: (A, <)°—e-FINE is complete if for every
a € A and every normal subgroup N of @, with a(x) ¢ N for xe U:=1 X (®,), there
exists a unique fe€ A such that <a and N=Ker Hg’a (it follows that §,/N is a
quotient e-structure of @, and Gz =@,/N).

Denote by e-CPS the category of complete projective systems (of finite e-
structures) with morphisms defined as above. Let e-CPSI be the subcategory of e-
CPS with the same objects, but only with morphisms (¢, v) : ®— $ such that ¢ is
injective and y is a natural isomorphism.

1.2.1. Proposition. There exists a canonical duality between the categories e-
PROFIN and e-CPS, which induces a duality between e-PROFINE and e-CPSI.

Proof. Define a functor S : e-PROFIN— (e-CPS)° as follows. If G is a profinite e-
structure, denote by A =A(G) the set of open normal subgroups N of G with
o(x)¢ N for xe U:=1 X;(G). Consider the partial order on A defined by N< N’ iff
N'CN. A is cofinal in the set of all open subgroups of G.

Let S(G): (A, <)’—e-FINE be the functor given by

NeA~G/N,
b 4 .
N<N'=G/N!—%5G/N the canonical epi.



The absolute Galois group of a pseudo real closed field 5

Obviously, S(G) is a complete projective system of finite e-structures.
Given a morphism A:G—H in e-PROFIN, let S(1) = (g, ) : S(H)—S(G) be the
morphism in e-CPS defined by

¢ :AH)~A(G): N~-A"Y(N);
wn:G/A"{(N)=H/N, the canonical mono induced by A,

for Ne A(H).

Conversely, define a functor G : (e-CPS)’—e-PROFIN, as follows. If §: (A, < )°0—
e-FINE is an object of e-CPS, let G(®) be the profinite e-structure lim,e 4 §,.
Given a morphism (¢,y) in e-CPS from ®:(A, <)’~e-FINE to $: ([, <)~
e-FINE we get a canonical morphism G(g, v) : G(9)— G(®) of profinite e-structures,
associated to (¢, v). '

It is a simple exercise to verify that the pair (S, G) defines a duality between e-
PROFIN and e-CPS which induces a duality between e-PROFINE and e-CPSI, as
contended. [

2. The cologic for profinite e-structures

We develop in this section a cologic for profinite e-structures on the line of the
cologic for profinite groups (7, §2].
First we define auxiliary first-order structures dual to profinite e-structures.

Definition. A projective system of (discrete) e-structures is a contravariant functor
® defined on a directed partial ordered set (A, <) with values in the category of
(discrete) e-structures with epis:

aeN~Y,,
a=p~[]:9;—0,.
o f

In terms of predicate calculus, a projective system of e-structures is a set S
together with the following data:

(1) A subset 4 of S and a directed partial order < on A.

(ii) Some subsets G, X|,..., X, of S such that S is the disjoint union AU
GUU;_, X,

(iii) A binary relations on S which defines a map s: GU U; X;—A in such a
way that the restriction maps sy:G—A, s;: X;—A, i=1,...,e are onto; denote
Go=5" (@), Xiq=57"(), i=1,...,e, a€A.

(iv) A ternary relation on S which defines for each ¢ € A a group law - on G,.

(v) A ternary relation on S which defines for each @eA some maps
XieXGy—=X, 4, i=1,...,ein such a way that O, =(Gy; X, g5 ---» X, o) becomes an
e-structure.
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(vi) A binary relation on S which defines for arbitrary &, f€ A, a=<}p, an epi of
e-structures [], ,:®3—@,, in such a way that the maps a~@, and a<f~1],,
define a contravariant functor @ on (A, <) with values in the category of e-
structures with epis.

Let L, be the first-order language for such structures. Clearly the class of projec-
tive systems of e-structures is axiomatizable in L, by finitely many VH-sentences.
Note that an L,-embedding doesn’t define always a morphism of projective
systems.

Adjoin to L, unary predicates R, for all positive integers n to get a language L.

Definition. A stratified projective system of e-structures is an L_-structure (S; R,,
n=1) where S is a projective system of e-structures (seen as an L,-structure) and
for each positive integer n,

R,=A"U | <GaUU X,-,a>, with A®W = {aeA|(G,:1)=<n}.
i=1

aeA"

The rank of an element a€ S is the smallest ne N, if such n exists, subject to
ae R,. Otherwise we say that @ has infinite rank.

Definition. The ranked part S of S is the L,-substructure of S containing only
the elements of S with finite rank.

If S is non-empty, then S represents the maximal projective system (not
necessarily directed) of finite e-structures contained in S.

Definition. A stratified projective system S is ranked if S=8@), i.e. the L.-
structure S represents a directed projective system of finite e-structures.

Definition. A stratified projective system S is complete if the projective system of
finite e-structures represented by S is directed and complete (see (1.2)), i.e. the
next conditions are satisfied: '

(i) For n=1, ae A" and N a normal subgroup of G, with a(x)¢ N for xe
U, | X o> there exists uniquely fe A such that f<a and N=Ker [], .

(ii) For n=1, a, e A™ there is y€ A such that a<y and B=y.

The class of complete projective systems is L,-axiomatizable.

It follows that the category of complete ranked projective systems with L,-
embeddings may be identified with the category e-CPSI introduced in (1.2), the dual
of e-PROFINE, by (1.2.1). We now use the duality (1.2.1) to extend the cologic for
profinite groups developed in [7, §2] to a cologic for profinite e-structures.

We work with a fragment of the logic L,. The set of bounded L, -formulas is
defined as the smallest set of L,-formulas containing the atomic formulas, closed
under logical connectives, and closed under

P - (AX)(R,(x)A0)
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where ne N and x is a variable.
The next lemma is immediate.

2.1. Lemma. Let S be a stratified projective system, ¢(x,,...,x,,) a bounded L,-
formula, and ay, ...,a,€S“). Then

S;:Q(al,..., m) lff S(“’);:¢(a1,...,am).

Definitions. (a) A coformula (consentence) for profinite e-structures is a bounded
L,-formula (L, -sentence).

(b) For an L,-structure S, the language L,(S) is the augmentation of L, by con-
stants for S. We get the obvious notion of bounded L.(S)-formula.

(c) A coformula over a profinite e-structure G is a bounded L.(S(G))-formula
(see (1.2) for definition of the functor S).

(d) Let o(x,...,x,) be a coformula over G and let a,...,a,,€S(G). G
cosatisfies ¢(ay, ..., a,) (written G ¢(ay, ..., a,,)) if S(G)=¢(a,-..,a,,).

(e) The cotheory of G (written Coth(G)) is the set of all cosentences cosatisfied
by G.

(f) G and H are coequivalent if Coth(G)= Coth(H).

(8) An epi ¢:G—H is coelementary if the corresponding L,-embedding
S(p) : S(H)— S(G) is b-elementary, i.e. S(¢) preserves bounded L.(S(H))-sentences.

3. Co-ultraproducts of profinite e-structures

Let (G,)ier be a family of profinite e-structures and D be an ultrafilter on I
For each 1 eI, A; = A(G,) is the set of open normal subgroups N of G, for which
ag(x) &N for xe Ule X;(G). If NeA,, then G;/N is the finite quotient e-structure
of G; determined by N. A, is partially ordered by the relation N<N’ iff N'CN.

Form the L,-structure [],_,-S(G;)/D. This ultraproduct is a complete stratified
projective system of (discrete) e-structures, but is not necessarily ranked. In a func-
torial setting, [],.,S(G;)/D is a contravariant functor defined on the directed
partially ordered set [],_,(A;, <)/D with values in the category of (discrete) e-
structures with epis, defined on objects as follows:

(N,)/D~ [] (G,/N,)/D.
Aerl
Denote by [[“ S(G;)/D the ranked part (11 S(G,)/D)® of [1S(G,)/D. Then

[1° 8(G;)/D is a (directed) complete projective system of finite e-structures. The
next lemma follows easily from (2.1) and Les’ Theorem.

3.1. Lemma. For each bounded L. -formula ¢(xy, ..., x,) and arbitrary f,, ..., f, €
[1 S(G;) with f,/D,...,f,/De [1°8(G;)/D, the next statements are equivalent:

(1) [1SG,)/De¢(f1/D,..., f,,/D),
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(i) {rer|SGY=o(/i(d),..., (1))} €D.

Define the co-ultraproduct [[“ G;/D as the profinite e-structure G([[“ S(G,)/D)
corresponding by duality to the complete projective system of finite e-structures
[1“ S(G,)/D. Moreover, we get obviously a covariant functor [[*/D: e-PROFIN/ -
e-PROFIN inducing by restriction a covariant functor [[“/D:e-PROFINE! —e-
PROFINE. For G, =G for all eI, we write G*//D instead of [[*G;/D, and call
this profinite e-structure the co-ultrapower of G w.r.t. the pair (I, D). Thus we get
a covariant functor “’/D:e-PROFIN— e-PROFIN inducing by restriction a
covariant functor “//D:e-PROFINE—e-PROFINE. The diagonal map
A : S(G)~ S(G)'/D induces by (3.1) a b-elementary map 4 : S(G)—(S(G) /D)«
and by duality a coelementary epi V ‘:-G\“’r /D —G.

We end this section with a construction, which is useful in Section 6. Let G be a
profinite e-structure and let I" be a cofinal\ subset of the directed partially ordered
set A(G) of open normal subgroups N of G with a(x)¢ N for xe U,:]X,-(G).
Obviously G=limyc, G/N. Consider the family of sets Zy={Uel INSU} =
{Uer|UCN}, for all NeT. Since I' is cofinal in A(G), the family (Zy)yer is a
filter basis on I. Let D be an ultrafilter on I" containing the Zy’s for all NeT.
Consider the canonical epis 7y : G— G/N for NeI and define the L,-embedding
A:S8(G)~ Iy S(G/N)/D induced by the canonical monotone map

A (I, <)~ [l A(G/N)/D: U~(UN/N)/D.
Nel
Clearly A’ is injective and for each Uerl, the canonical morphism G/U—
[Iye(G/UN)/D is an isomorphism since [[, . (G/UN)/D=(G/ UY/D=G/U as
G/U is finite.

The L_-embedding induces by restriction to ranked parts the L_-embedding

1:8(G)~ [1” S(G/N)/D.

Nerl

By duality we get a canonical epi of profinite e-structures

G(): [[* (G/N)/D—G.

Nerol

4. Projective profinite e-structures

A profinite e-structure G is projective if every diagram of profinite e-structures

G
@ (1)

E—H
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with y epi, can be completed to a commutative diagram by a morphism 6: G—E.
(We say that the extension problem (1) has a solution 8).
In the following we give a characterization of projective profinite e-structures.

4.1. Proposition. Let G be a profinite e-structure. The next statements are
equivalent:

(i) G is projective.

(i) Every epi w:E—G splits, i.e. there is i : G=E with yi=1g.

(iii) For each epi y :E—G there exist a coelementary epi p: G*—G and a mor-
phism 0:G*—E such that p=y?#.

(iv) Every extension problem (1) with ¢,y epis and E finite has a solution
6:G—E.

Proof. (i)—(ii) is trivial.

(ii)— (iii) is immediate. Take G*=G and p=1g.

(iii) — (iv) Consider the diagram (1) with ¢, y epis, E finite. By assumption we get
a commutative diagram

G*

0 p
T—Y G

9’ 9
E——H

where (T; v, ") with y’, ¢’ epis is the pullback of the pair (p,¥) and p is a
coelementary epi. Now, the existence of a solution 8 for the extension problem (1)
is obviously equivalent to the fact that G cosatisfies certain cosentence ¢ over G.
Since ¢’0’ is a solution of the extension problem derived from (1)

G*
op

E v

H

it follows G*=¢. As p is a coelementary epi we get finally G = ¢.
(iv)—(i). First observe that (iv) is equivalent with the next statement.
(1v") Every extension problem (1) with y epi, E finite has a solution.
Indeed it suffices to apply (iv) to the extension problem
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’

o(H) Xy E—— o(H)

where the projection y’ is epi since y is so.

Next consider the diagram (1) with y epi and assume that the kernel A of the epi
w:E—H is finite. As A is a closed normal subgroup of E, there is an open normal
subgroup N of E with NN A =1. We may assume y(N) e A(H), i.e. a(x) ¢ N for all
X€ U; X;(H). We get the canonical commutative diagram

G
@
o
HXH/w(N) E/N=E H
n’ /4
v’ !
E/N H/y(N)

Since E/N is finite, we get by (iv") some §': G=E/N with ng = y’6’. By universality
of pullbacks, there is uniquely 6: G—E with ¢ =60 and 6’=n'6.

Finally, consider an arbitrary diagram (1) with y epi, and let S be the set of pairs
(N, A), where N is a closed subgroup of A=Ker v which is normal in E and
A:G—E/N is a morphism such that ¢ =yyA, with yy:E/N—H induced by y.
The set S is non-empty since (4,9)eS. Define a partial order on S by:
(N, AD)=(Np, 45) iff NCN; and Ay =mp, N4y, Where my, n iE/N,—E/N; is
canonic. S is inductive w.r.t. the order <. Let (N, 1) be a maximal pair in S. If
N =1, then there exists by [18, Ch.I, Lemma 5], a proper open subgroup N’ of N
which is normal in E. Then N/N'is finite and so there is 1': G=E/N’ with A=y ’A’,
where y': E/N'—E/N is canonic. We get (N’,A’)€ S and (N, 1")>(N, 1) contrary
to maximality of (N, 4). Consequently N=1 and ¢=wiA. 0O

Remark. It is shown in [5, Theorem 3.1] that the statements (i)-(iv) above are also
equivalent with the following one.

(v) Every extension problem (1), with E finite, y Frattini cover of H (i.e. there
is no proper sub-e-structure E’ of E such that the restriction y/E’: E'—H is epi) and
A =Ker y abelian minimal normal subgroup of E, has a solution.

It is obtained in this way a suitable generalization of a well known characteriza-
tion of projective profinite groups [12, Proposition 1].

We end this section with a lemma which is useful in Section 6.
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4.2. Lemma. Let G be a projective profinite e-structure. Then Z, is a quotient e-
structure of G.

Proof. For all i=1,...,e, fix some x; € X;(G), and let g;=0(x;). Let E be the pro-
finite e-structure with underlying profinite group E=G x Z /27, and E-sets X (E)=
H;\ E where H; is the cyclic group of order 2 of E generated by the involution
(0;,1+227), i=1,...,e. The action of E on X;(E) is given by: (H;(g,1),(g, 1)~
H(gg,t+1), for gg’eG, 1,1'€eZ/27Z. The profinite e-structure E with the
epis p:E=G, py:E—Z, given by pl(g,0)=g, pig1)=1, pi(H(g )= xt,
ph(H(g, 7)) =% i=1,...,e, is a direct product of G and Z,. As G is projective there
isamono n:G—E splitting D1, i.e. pyn=1¢. Thus we get a morphism p,7 : G—17,.
Since the morphisms of e-structures taking values in Z, are epis, we conclude that
7, is a quotient e-structure of G. [J

5. From e-fold ordered fields to profinite e-structures

Let K=(K; Py, ..., P,) be an e-field, e=1, and L be a Galois extension of X such
that L is not formally real (fr) over the ordered fields (K,Py), i=1,...,e. We
naturally assign to the pair (K,L) a profinite e-structure G(L/K)= (GWL/K);
X(L/K), ..., X (L/K)) called the Galois e-structure of L/K. The underlying group
of G(L/K) is the Galois group G(L/K) of L over K, X;(L/K) is the set of pairs
(0, Q), o an involution of G(L/K), Q an order extending P; on the fixed field L(o),
and the action X;(L/K) x G(L/K)— X;(L/K) is given by ((g, 0),9~(c", Q") with
g'=1"lotr, Q7= {a’:=1(a) | ae Q}. It follows easily that the invariant subgroup of
some (o, Q) € X;(L/K) is the cyclic group of G(L/K) generated by the involution o.
Note that G(L/K) is the projective limit liln G(E/K) of finite e-structures, where E
ranges over all finite Galois extensions of K with EC L and E is not fr over (KX, P),
i=1,...,e

In particular, if L =X is the algebraic closure of K , we get the absolute Galois e-
structure G(K) = G(K/K) of the e-field K. Note that X;(K)=X;(K/K) is identified
with the set of involutions ¢ of G(K) = G(K/K) for which the fixed field K (0)is a
ral closure of (K, P)), i=1,...,e

Denote by F, the first-order language of e-fields. F, is an extension of the
language (+, —,.,0,1) of rings with e unary predicates m;,..., 7, standing for
orders.

A basic fact is that the cotheory of G(K), K an e-field, is interpretable in K, as
follows from the next analogue of [7] Lemma 17.

3.1. Proposition. There is a recursive map ¢~ @ from cosentences to F, -sentences
such that for every cosentence ¢ and every e- -field K, G(K)= ¢ iff K ¢.

Proof. The statement is a consequence of the following facts:
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(1) Under the Galois duality L~ G(L), the following objects are in 1-1 cor-
respondence: finite Galois extension L/K, with [L:K]=m and L not fr over
(K,P;), i=1,...,e, and open normal subgroups Ne A(G(X)) (i.e. NN U,:l X;(K) is
empty) with (G(K): N)=m.

(2) Coding finite extensions of K in K: For each m, let us fix the basis
(b, ..., b,) of K™ by b;=(0,...,1,0,...,0) with 1 on the ith place. Then a point
(Cijx)ijksm=c€K ™ uniquely determines an m-dimensional K-algebra Ac. It
follows via the splitting field criterion that the ¢ such that Ac is a Galois extension
of K form a first-order definable subset of K™ . Moreover, the (c,d)eK m o K"
for which Ac, Ad are Galois extensions of K and Ac is K-embeddable in Ad form
a first-order definable subset of K™ x K.

(3) For each finite e-structure G, the ce X m for which Ac is a Galois extension
of K, not fr over (K, P;), i=1,...,e, and G(A¢/K)=G form an F,-definable subset
of K™. Indeed, the condition ‘“‘Ac¢ is not fr over (K, P;)’’ is equivalent to the ex-
istence of some z € Ac such that the minimal polynomial of z over K has no roots
in the real closure (ﬁ) of (K, P;). On the other hand the condition ‘‘the subfield
Ad of Ac as above is maximal with the property that Ad is fr over (K, P;) and there
are k distinct orders extending P; on Ad’’ is equivalent to the fact that
[Ac:Ad]=2, Ad =K|[z] and the minimal polynomial of z over K has k distinct roots
in (K,P;). Note that the statements above may be translated in the language of
(K; Py, ..., P,) thanks to elimination of quantifiers for real closed fields. [J

The next result is a generalization of [7, Lemma 19].

5.2. Lemma. Let D be an ultrafilter on the index set I', and K,=(K,; Py ..., P ),
Y€E€T, be e-fields. For each y eI, let L, be a Galois extension of K, such that L, is
not fr over (K,,P;,), i=1,...,e. Assume that there exists meN such that for
almost all (relative to D) y €I, there exists a finite Galois extension M, of K,,, con-
tained in L,, which is not fr over (K,, P, ,), i=1,...,e, with [M,:K ,]<m.
Denote by K=(K; Py, ..., P,) the ultraproduct 1] K,/D and by L the algebraic
closure of K in [I L,/D. Then L is Galois over K and not fr over (K, P)), i=1,...,e,
and G(L/K) is canonically isomorphic to the co-ultraproduct [I* G(L,/K,)/D.

Proof. The statement follows from the next facts, which are consequences of Las’
theorem and elimination of quantifiers for real closed fields:

(1) A Galois extension of [] K,/D of degree n, contained in [[L,/D, can be
identified with some [[ N, /D, where N, is a Galois extension of K,, contained in
L,, which is for almost all (relative to D) yel of degree n over K,,.

(2) In the above, [[N,/D is not fr over. (K, P), i=1,...,e, iff N, is not fr over
(K,,P;,), i=1,...,¢e for almost all yel. In this case, the finite e-structure
G(I] N,/D|K) is naturally isomorphic to [[ GWV,/K,)/D. O
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5.3. Corollary. Let D be an ultrafilter on the index set I" and K,, yeT, be e-fields.
Then G([1 K, /D) is canonically isomorphic to [[* G(K,)/D.

6. Proof of the main results

In order to prove the two main results of the paper we need the following lemma,
a non-trivial generalization of [11, Lemma 1.1], [3, II, Lemma 4.1].

6.1. Lemma. Let K=(K; Py, ..., P,) be an e-field, L a Galois extension of K which
is not fr over (K,P), i=1,...,e, G a profinite e-structure and y:G—G(L/K) an
epi. Then there exist an extension E=(E; Q,, ..., Q,) of K, with E regular over K,
a Galois extension F of E such that L is the algebraic closure of K in F (in particular,
Fis not fr over (E,Q)), i=1,...,e) and an isomorphism n : G—G(F/E) such that the
next diagram is commutative

G ——G(F/E)

\ / (1)
W res

G(L/K)

Proof. (a) First, let us consider the finite case, i.e. assume G(L/K) and G are finite.
Let U={u®|ge G} be a set of |G| algebraically independent elements over K. The
group G acts on U from the right in an obvious manner. It also acts on L through
y by the formula a® = a¥®. Consequently, G acts on the field of rational functions
F=L(U). Let E be the fixed field of G in F. It follows that ENL =K and LE is
regular over L, as a subfield of a rational function field over L, and hence E is
regular over K. Now let us identify the group G with G(F/E) in the obvious manner
and the group epi y : G G(L/K) with the restriction res : G(F/E )2 G(L/K). 1t re-
mains to show that there are some orders Q; of E such that Q; extends P;,
i=1,...,e, and the identity group isomorphism I; extends to an isomorphism
1: G~ G(F/E) of e-structures in such a way that the diagram (1) commutes.

Fix some x;€ X;(G), i=1,...,e, and let 0;=0(x;)€e G=G(F/E). Then w(x;)=
(z; P;), where 7; is an involution of G(L/K) which coincides with the restriction of
g;on L and P/is an order extending P; on the fixed field L(z;) of 7;in L. So it suf-
fices to extend P;to an order Q; on the fixed field F(o,) of g, in F, take the restric-
tion Q; of Q; on E and define

nxty=(a}, Q") for Ae G=G(F/E), i=1,...,e.

Fix some ie{l,...,e} and let M=L(7;). Then there exists ae L \ M such that
L =M]la] and —azeP,-'. g; acts obviously on the field of rational functions M(U).
Let NDOM be the fixed field of g; in M(U).
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First let us show that F(a;) = N[a(u' —u%)]. Each element of F can be uniquely
written in the form f+af’ with f,f'e M(U). Let f+af’ € F(o;). Then f+af' =
(f+af')i=f%—af"”, and hence f%=f and f%=—f". Thus we get

f+af =f+a@' —u®)(f"/(u' —u’)) e Nla(u' — u°)]

since fe N and f//(u' —u’)eN.

In order to extend P; to an order Q; of F(a;), it suffices to extend P; to an order
Q! of N in such a way that (u' —u%)*e —Q;. For, if so, then (a(u'—u’))*eQ;,
i.e. F(g;) is fr over (N, Q;).

Consider the tower of fields

McScNcMU)
where
S=M@u* +u*% ututi| A e G) = M(u* + %, (u* — u**)?| 1 € G).

As the transcendency degree of M(U)/M is |G| and M(U)=S[u*|1 e G] with
the u* algebraic over S, it follows that S/M is purely transcendental and the set
{u* + u*, (u* — u*)?| 1€ G} is a transcendency basis of M(U)/M. Consequently,
there exists some order Q” of S such that Q” extends P! and (u* —u*?)>e —Q”
for all Ae G. Let Q” be such an order. It remains to show that N is fr over (S, Q").

Let N’=S[(u‘—u“"’)(u'—u"")l,leG]. Let us show that N'=N. The inclusion
N’C N is trivial, so it remains to verify that [M(U): N’] =2. Since [N'[u']: N'] =2,
it suffices to show that M(U)=N'(u']. However the latter equality is a conse-
quence of the identities u*=a; + 8,u', A€ G, with

B ui _ uia,- (ui —_ uia’,')(ul — ua’,')
A ul_u61 (ul_uai)Z

wlub%i—uout (W4t Bt + u)

ul —y% 2

Thus we get N'=N.

Let {; =@ —u*)u'-u%), 1€ G, and so N=S[{;|A € G]. Let us show that the
degree of S[{;]1=S[{;,,] over S is 2 for A#1, A+#a;. Obviously, t2eS. On the
other hand, {; ¢S for A#1, A #a;, since u* — u*° and u' — 4% are algebraically in-
dependent over M and the polynomial W2 — YZe M(Y, Z)[W] is irreducible. As
O =[— W - u*" )] [- (' - u°)?1e Q”, the order Q” of S can be extended to an
order of N, as contended.

(b) Now let és consider the general case. Let I” be the subset of A(G) consisting
of those N with y(N) e A(G(L/K), i.e. the fixed field Ly of w(N) in L is a finite
Galois extension of K which is not fre over (K, P)), i=1,...,e. I is cofinal in A(G),

G=lim G/N, G(L/K)=lim G(Ly/K) and y=lim yy,

Nerl Nel Nel

eN’,

a,= € N

where the epis y : G/N —>G(Ly/K) are induced by . Using the construction from
Section 3 we get a commutative diagram of epis for a suitable ultrafilter D on I”
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11* /N0 X 1o gt k) /D
d b )
G v  G(L/K)

On the other hand, by the first part of the proof, we get for each Ne I” an extension
En = (En; Oy, N> -+-» Qe n) of K with Ey regular over K, and a finite Galois extension
Fy of Ey in such a way that Ly is the algebraic closure of X in Ej;, the e-structure
G(Fn/Ey) is identified with G/N and the epi yy is identified with the restriction
res: G(Fn/En)2G(Ly |K). Let K*=(K*; P}, ...,PH)=K!/D, E=(E; Q,,...,0,) =
M1 En/D, L* be the algebraic closure of K* in [[Ly/D and M be the algebraic
closure of E in [[ En/D. Consider the diagram of fields

M
L*/

L—

S 3)

K*
k—

We get easily that the extensions E/K, E/K*, M/L and M/L* are regular. Fix some
Uin I and let (G : U)=m. Since, by choice of D, {VeF| U<V} eD it follows that
for almost all Ne I, Fy contains a subfield which is Galois over Ey, not fr over
(En» Qi n), i=1,...,e, and of degree over Ey bounded by m. Consequently, by
(5.2), the Galois extension M of E is not fr over (£, Q,), i=1,...,e, and G(M/E) is
canonically isomorphic to [[” G(Fx/EN)/D= [1°(G/N)/D. Similarly, the Galois
extension L* of K* is not fr over (K* Pf), i=1,...,e and G(L*/K*) is canonically
isomorphic to [[“ G(Ln/K)/D. From (2) and (3) we get the commutative diagram
of epis

=* wn/D
coup) =1 » G(L*/K¥)
7] res=48’
G v > G(L/K)

It remains to take F the fixed field of Ker 8 in M/E to get a Galois extension F of
E such that L is the algebraic closure of K in F and G(F/E), res : G(F/E)—G(L/K)
are respectively identified with G and y, as contended. [

6.2. Proof of Theorem I. Let K=(K; P,, ..., P,) be a prc e-field. We have to show
that G(K) is projective. According to (4.1) it suffices to show that for every epi
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v : G G(K) there exist a coelementary epi p: T—G(K) and a morphism 6: TG
such that p=y#0. Given an epi y: G- G(K) it follows by (6.1) that there exist an
extension E=(E; Q,,...,Q,) of K, with E regular over K and a subfield F of the
algebraic closure E of E such that the algebraic closure K of K is contained in F,
F is Galois over E, and G(F/E), res : G(F/E)— G(K) are respectively identified with
G and y. Since, by assumption, K is a prc e-field, it follows that K is ec in E and
hence by Scott’s lemma [6, Lemma 8.1.3, Corollary 9.3.11], E can be embedded
over K into an elementary extension K* of K. Thus we get the canonical com-
mutative diagram of profinite e-structures

G(K*)

0 p

G =G(F/E) ——— G(K)

where the restriction 6 is not necessarily an epi. Finally note that the restriction p
is a coelementary epi according to (5.1). O

Remark. A tentative to prove the theorem above in the special case e=1 is due to
McKenna [15] but unfortunately the proof of [15, Theorem 1.1] contains a mistake,
though the respective statement is correct. The error occurs at page 1.6, where the
Hoschild-Serre sequence contains the incorrect term H?(N, u) instead of the correct
one H' (7, H'(G(2), u)). By contrast with McKenna’s intricate approach which re-
quires Galois cohomology, the proof given here is quite simple and of model-
theoretic nature.

Finally let us prove the second main result of the paper, which gives a charac-
terization of profinite e-structures which can be realized as absolute Galois e-
structures over prc e-fields.

First we prove a little more general result.

6.3. Theorem. Let K=(K; P,,..., P,) be an e-field, L a Galois extension of K such
that L is not fr over (K, P;), i=1,...,e, G a profinite e-structure and v : G—G(L/K)
an epi. Then the next statements are equivalent:

(i) There exist an e-field extension E of K and an isomorphism 6 : G—G(E) such
that E is a prc e-field, ENL =K and the diagram

L GE®

/I'CS

G(L/K)
is commutative.
(ii) G is projective.

G
W
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Proof. (i)—(ii) follows by (6.2).

(i))—(1). Assume G is projective. By (6.1), there exist a regular e-field extension
K’ of K and a Galois extension L’ of K’ such that L is the algebraic closure of K
in L’ and the restriction res : G(L'/K")— G(L/K) is identified with the epi . Accord-
ing to [17, Theorem 1.1] there exists a regular e-field extension M= (M; Q,, ..., Q.)
of K’ such that M is a prc e-field. Consider the commutative diagram

GM) : G(L/K) =G

\

G(L/K)

where A and ¢ are restriction epis. As G is projective, there exists a mono
u:G—G(M) splitting A. Note that for each involution 7 of G there is some
xeJi_1 Xi(G) with 7=g(x). Indeed u(7) is an involution of G(M) and hence
u(r) € U; X;(M) since Q, ..., Q, are the only orders of M. Assume u(7) € X;(M).
Then we get

t=2%u(1) = 1%a(u(1))) = (A (u(7)).

Thus 7=a(x) with x=A'(u(1)) € Xi(G).

Let EC M be the fixed field of u#(G). Since u(G) is a sub-e-structure of G(M), we
get u(Xi(G))= {0 |reu(G)} for some involution o;eu(G) for which M(g,) is a
real closure of (M,Q)), i=1,...,e. Let Q/=ENM(g;)% i=1,...,e. Then u(G)
is identified with the absolute Galois e-structure of the e-field extension E=
(E; Qi ..., Q;) of M. The remark above on the involutions of G implies that there
are only e distinct orders on E, namely Q;, ..., Q,, extending respectively the orders
Qi ..., Q, of the prc e-field M. Since E is algebraic over the prc field M it follows
by [17, Theorem 3.1] that E is prc too, and so E is a prc e-field. Finally we get the
commutative diagram

u(G)

Al
GE)=pG)—G
(p]#((x‘ /’
G(L/K)
Obviously, ¢|,q) is epi, i.e. ENL =K, as contended. [J
Remarks. (i) Taking in the statement above L = K and v : G—G(K) an epi, it follows
that the prc e-field E from (i) is regular over K.

(ii) It follows from the proof above that for each involution 7 of a projective pro-
finite e-structure G there is x e Ule Xi(G) with 7=0(x).

The second main result of the paper is an immediate consequence of (6.3).
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6.4. Proof of Theorem II. Let G be a profinite e-structure. If G=G(K), K a prc e-
field, then G is projective by Theorem 1. Conversely, assume G is projective, and
let K be an e-field and L =K(i), i®=—1. Since G is projective, we get by (4.2) an
epi v :G—2Z,=G(L/K). Applying (6.3), we get a prc e-field E with GE)=G. 0O
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