# THE ABSOLUTE GALOIS GROUP OF A PSEUDO REAL CLOSED FIELD WITH FINITELY MANY ORDERS 

Şerban A. BASARAB*<br>Central Institute for Management and Informatics, B.D. Miciurin, Nr. 8-10, Bucharest 1, Rumania, and<br>Institute for Mathematics, Str. Academiei 14, Bucharest l, Rumania<br>Communicated by C. Mulvey<br>Received 24 August 1983<br>Revised 18 April 1984<br>\section*{Contents}<br>1. Profinite $e$-structures .................................................................................. 3<br>2. The cologic for profinite $e$-structures ....................................................... . . . . 5<br>3. Co-ultraproducts of profinite $e$-structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br>4. Projective profinite $e$-structures ................................................................. 8<br>5. From $e$-fold ordered fields to profinite $e$-structures ........................................ . . 11<br>6. Proof of the main results ........................................................................... . . 13

## Introduction

In his celebrated paper [1] on the elementary theory of finite fields Ax considered fields $K$ with the property that every absolutely irreducible variety defined over $K$ has $K$-rational points. These fields have been later called pseudo algebraically closed (pac) by Frey [10] and also regularly closed by Ershov [8], and extensively studied by Jarden, Ershov, Fried, Wheeler and others, culminating with the fundamental works [7] and [11].

The above definition of pac fields can be put into the following equivalent version: $K$ is existentially complete (ec), relative to the customary language of fields, into each regular field extension of $K$. It has been this characterization of pac fields which the author extended in [2] to ordered fields. An ordered field ( $K, \leq$ ) is called in [2] pseudo real closed (prc) if ( $K, \leq$ ) is ec in every ordered field extension ( $L, \leq$ ) with $L$ regular over $K$. The concept of prc ordered field has also been introduced

[^0]by McKenna in his thesis [14], by analogy with the original algebraic-geometric definition of pac fields.

Recently, Prestel [17] introduced a very inspired concept which extends the concept of a pac field as well as of a prc ordered field. According to [17], a field $K$ is said to be prc if $K$ is ec, relative to field language, in every regular field extension of $K$ to which all orders of $K$ extend.

A system $K=\left(K ; P_{1}, \ldots, P_{e}\right)$, where $K$ is a field, $e$ is a positive integer and $P_{1}, \ldots, P_{e}$ are orders of $K$ (identified with the corresponding positive cones), is called an $e$-fold ordered field (e-field). It turns out by [17, Theorem 1.7] that an $e$ field $K$ is ec, relative to the first-order language of $e$-fields, in every regular $e$-field extension of $K$ iff $K$ is prc, $P_{i} \neq P_{j}$ for $i \neq j$ and $K$ has exactly $e$ orders. Let us call such an $e$-field $K$ a prc e-field.

It is well known that the absolute Galois group $G(K)$ of a pac field $K$ is a projective profinite group (see [1] for perfect pac fields). It is also known [16], [7, Proposition 38], that all projective profinite groups occur as $G(K), K$ a pac field. The main goal of the present paper is to prove that the statements above remain true for pre $e$-fields $K$ if we replace the absolute Galois group $G(K)$ by a suitable generalization $\mathbf{G}(\mathbf{K})$ called the absolute Galois $e$-structure of the $e$-field $\mathbf{K}$, and projectivity for profinite groups by projectivity for the so called profinite $e$-structures.

Theorem I. Let $\mathbf{K}$ be a prc e-field. Then its absolute Galois e-structure $\mathbf{G}(\mathbf{K})$ is a projective profinite e-structure.

Theorem II. The necessary and sufficient condition for a profinite e-structure $\mathbf{G}$ to be realized as the absolute Galois e-structure over some prc e-field is that $\mathbf{G}$ is projective.

In order to prove the theorems above we introduce and investigate in Sections 1-4 some group-theoretic objects called $e$-structures. Some basic facts concerning the model theory of profinite $e$-structures are developed in Sections 2,3 on the line of the cologic for profinite groups from [7]. The projective profinite $e$-structures are characterized in Section 4.

Section 5 answers the question: what is the appropriate extension to the theory of $e$-fields of the basic concept of Galois group from the field theory? [appropriate in the sense that it must reflect the Galois group structure as well as the relation between this one and the orders of a given $e$-field]. The answer to this question is suggested by the concept of order-pair introduced in [13]. It turns out that the suitable group-theoretic concept for $e$-fields is the concept of profinite $e$-structure introduced in Section 1. To each $e$-field $\mathbf{K}$ we naturally assign a profinite $e$-structure $G(K)$, called the absolute Galois e-structure of $\mathbf{K}$, in such a way that the elementary statements about $\mathbf{G}(\mathbf{K})$ are interpretable in the first-order language of $\mathbf{K}$.

Finally. the proofs of the main results stated above are given in Section 6.

## 1. Profinite $\boldsymbol{e}$-structures

1.1. Let us fix a natural number $e$. By an $e$-structure we mean a system $\mathbf{G}=$ ( $G ; X_{1}, \ldots, X_{e}$ ), where $G$ is a group and the $X_{i}$ 's are non-empty $G$-sets satisfying the next conditions:
(i) The actions $X_{i} \times G \rightarrow X_{i}:(x, \tau) \mapsto x^{\tau}$ are transitive, i.e. the $X_{i}$ 's are $G$-orbits.
(ii) For $x \in X_{i}, i=1, \ldots, e$, the invariant subgroup $\operatorname{Inv}(x)=\left\{\tau \in G \mid x^{\tau}=x\right\}$ is cyclic of order 2 .

If $x \in \bigcup_{i=1}^{e} X_{i}$, denote by $\sigma(x)$ the involution of $G$ which generates $\operatorname{Inv}(x)$.
Given an $e$-structure $\mathbf{G}$, we usually denote by $G$ the underlying group of $\mathbf{G}$ and by $X_{i}(\mathbf{G}), i=1, \ldots, e$, the corresponding $G$-sets.

A morphism of $e$-structures from $\mathbf{G}$ to $\mathbf{H}$ is an $(e+1)$-tuple $\varphi=\left(\varphi^{0}, \varphi^{1}, \ldots, \varphi^{e}\right)$, where $\varphi^{0}: G \rightarrow H$ is a group morphism and $\varphi^{i}: X_{i}(\mathbf{G}) \rightarrow X_{i}(\mathbf{H}), i=1, \ldots, e$, are maps subject to the following conditions:
(i) $\varphi^{i}\left(x^{\tau}\right)=\varphi^{i}(x)^{\varphi^{0}(\tau)} \quad$ for $x \in X_{i}(\mathbf{G}), \tau \in G$.
(ii) $\varphi^{0}(\sigma(x))=\sigma\left(\varphi^{i}(x)\right)$ for $x \in X_{i}(\mathbf{G})$.

Usually we denote by the same letter, say $\varphi$, the maps $\varphi^{0}, \varphi^{1}, \ldots, \varphi^{e}$ defining a morphism of $e$-structures.

Call $\varphi: \mathbf{G} \rightarrow \mathbf{H}$ a mono (epi) if $\varphi^{0}: G \rightarrow H$ is injective (surjective).
A sub-e-structure of $\mathbf{G}$ is an $e$-structure $\mathbf{H}$, where $H$ is a subgroup of $G$ and $X_{i}(\mathbf{H})$ is a subset of $X_{i}(\mathbf{G}), i=1, \ldots, e$, subject to
(i) There is $x_{i} \in X_{i}(\mathbf{G})$ such that $\sigma\left(x_{i}\right) \in H, i=1, \ldots, e$.
(ii) $X_{i}(\mathbf{H})=\left\{x_{i}^{\tau} \mid \tau \in H\right\}$ with $x_{i}$ as above, and the action of $H$ on $X_{i}(\mathbf{H})$ is induced by the action of $G$ on $X_{i}(\mathbf{G}), i=1, \ldots, e$.

A quotient e-structure of $\mathbf{G}$ is an $e$-structure $\mathbf{E}$ where $E=G / N$ for some normal subgroup $N$ of $G$ with $\sigma(x) \notin N$ for $x \in \bigcup_{i=1}^{e} X_{i}(\mathbf{G}), X_{i}(\mathbf{E})=X_{i}(\mathbf{G}) / N$ is the quotient set w.r.t. the next equivalence relation induced by $N$ :

$$
x \sim x^{\prime} \quad \Leftrightarrow \quad(\exists \tau \in N) x^{\prime}=x^{\tau}
$$

for $x, x^{\prime} \in X_{i}(\mathbf{G}), i=1, \ldots, e$, and the actions of $E$ on the $X_{i}(\mathbf{E})$ 's are induced by the actions of $G$ on the $X_{i}(\mathbf{G})$ 's.

If $\varphi: \mathbf{G} \rightarrow H$ is a morphism of $e$-structures, then the image $\varphi(\mathbf{G})=\left(\varphi^{0}(G)\right.$; $\varphi^{1}\left(X_{1}(\mathbf{G})\right), \ldots, \varphi^{e}\left(X_{e}(\mathbf{G})\right)$ ) is a sub-e-structure of $\mathbf{H}$ and $\varphi(\mathbf{G}) \cong \mathbf{G} / \operatorname{Ker} \varphi^{0}$.

Let $\varphi: \mathbf{G} \rightarrow \mathbf{H}, \varphi^{\prime}: \mathbf{G}^{\prime} \rightarrow \mathbf{H}$ be morphisms of $e$-structures and assume that the sets $X_{i}(\mathbf{G}) \times_{X_{i}(\mathbf{H})} X_{i}\left(\mathbf{G}^{\prime}\right), i=1, \ldots, e$, are non-empty. Then

$$
\mathbf{G} \times_{\mathbf{H}} \mathbf{G}^{\prime}=\left(G \times_{H} G^{\prime} ; X_{1}(\mathbf{G}) \times_{X_{1}(\mathbf{H})} X_{1}\left(\mathbf{G}^{\prime}\right), \ldots, X_{e}(\mathbf{G}) \times_{X_{e}(\mathbf{H})} X_{e}\left(\mathbf{G}^{\prime}\right)\right)
$$

with the canonical morphisms $p: \mathbf{G} \times{ }_{\mathbf{H}} \mathbf{G}^{\prime} \rightarrow \mathbf{G}, p^{\prime}: \mathbf{G} \times \mathbf{H}^{\mathbf{G}} \rightarrow \mathbf{H}^{\prime}$ is a pullback of the pair $\left(\varphi, \varphi^{\prime}\right)$.

An e-structure $\mathbf{G}$ is called finite (profinite) if the underlying group $G$ is finite (profinite). By morphisms, monos, epis of profinite $e$-structures we understand continuous morphisms, monos, epis. By a sub-e-structure $\mathbf{H}$ of a profinite $e$-structure $\mathbf{G}$ we mean a sub-e-structure of $\mathbf{G}$ for which $H$ is a closed subgroup of $G$.

The simplest example of $e$-structure denoted by $\mathbb{Z}_{2}$ has $\mathbb{Z} / 2 \mathbb{Z}$ as underlying group which acts trivially on the singletons $X_{i}\left(\mathbb{Z}_{2}\right)=\{*), i=1, \ldots, e . \mathbb{Z}_{2}$ has no proper sub-$e$-structures and quotient $e$-structures.
1.2. Denote by $e$-FIN ( $e$-PROFIN) the category of finite (profinite) $e$-structures. let $e$-FINE (e-PROFINE) the subcategory of e-FIN (e-PROFIN) with the same objects, but only with epis.

Now we extend the duality for profinite groups from [7, §2] to profinite $e$ structures.

Definition. A (directed) projective system (of finite $e$-structures) is a contravariant functor $\mathbb{B}$ from a directed non-empty partial ordered set $(\Lambda, \leq)$ to $e$-FINE:

$$
\begin{aligned}
& \alpha \in \Lambda \mapsto \mathscr{G}_{\alpha} \\
& \alpha, \beta \in \Lambda, \alpha \leq \beta, \mapsto \prod_{\alpha, \beta}: \mathfrak{G}_{\beta} \rightarrow \mathscr{G}_{\alpha} .
\end{aligned}
$$

Definition. Let $\mathscr{G}:(\Lambda, \leq)^{0} \rightarrow e$-FINE and $\mathscr{G}:(\Gamma, \leq)^{0} \rightarrow e$-FINE be projective systems. A morphism from $\mathscr{G}$ to $\mathfrak{W}$ is a pair $(\varphi, \psi)$, where $\varphi:(\Lambda, \leq) \rightarrow(\Gamma, \leq)$ is a monotone map and $\psi: \mathfrak{Q} \rightarrow(\mathbb{O}$ is a natural transformation such that for each $\alpha \in \Lambda$, the morphism $\Psi_{\alpha}: \mathfrak{Y}_{\varphi(\alpha)} \rightarrow \mathfrak{G}_{\alpha}$ is mono.

Definition. The projective system $\mathbb{G}:(\Lambda, \leq)^{0} \rightarrow e$-FINE is complete if for every $\alpha \in \Lambda$ and every normal subgroup $N$ of $\Theta_{\alpha}$ with $\sigma(x) \notin N$ for $x \in \bigcup_{i=1}^{e} X_{i}\left(\Theta_{\alpha}\right)$, there exists a unique $\beta \in \Lambda$ such that $\beta \leq \alpha$ and $N=\operatorname{Ker} \prod_{\beta, \alpha}^{0}$ (it follows that $\mathscr{G}_{\alpha} / N$ is a quotient $e$-structure of $\mathfrak{G}_{\alpha}$ and $\left.\mathfrak{G}_{\beta} \cong \mathfrak{G}_{\alpha} / N\right)$.

Denote by e-CPS the category of complete projective systems (of finite $e$ structures) with morphisms defined as above. Let $e$-CPSI be the subcategory of $e$ CPS with the same objects, but only with morphisms $(\varphi, \psi): \mathfrak{G} \rightarrow \mathfrak{G}$ such that $\varphi$ is injective and $\psi$ is a natural isomorphism.
1.2.1. Proposition. There exists a canonical duality between the categories ePROFIN and e-CPS, which induces a duality between e-PROFINE and e-CPSI.

Proof. Define a functor $\mathbf{S}: e$-PROFIN $\rightarrow(e-\mathbf{C P S})^{\mathbf{0}}$ as follows. If $\mathbf{G}$ is a profinite $e$ structure, denote by $\Lambda=\Lambda(\mathbf{G})$ the set of open normal subgroups $N$ of $G$ with $\sigma(x) \notin N$ for $x \in \bigcup_{i=1}^{e} X_{i}(\mathbf{G})$. Consider the partial order on $\Lambda$ defined by $N \leq N^{\prime}$ iff $N^{\prime} \subset N . \Lambda$ is cofinal in the set of all open subgroups of $G$.

Let $S(G):(\Lambda, \leq)^{0} \rightarrow e$-FINE be the functor given by

$$
\begin{aligned}
& N \in \Lambda \mapsto \mathbf{G} / N \\
& N \leq N^{\prime} \mapsto \mathbf{G} / N, \xrightarrow{\pi_{N, N^{\prime}}} \mathbf{G} / N \text { the canonical epi. }
\end{aligned}
$$

Obviously, $\boldsymbol{S}(\mathbf{G})$ is a complete projective system of finite $e$-structures.
Given a morphism $\lambda: \mathbf{G} \rightarrow \mathbf{H}$ in $e$-PROFIN, let $\boldsymbol{S}(\lambda)=(\varphi, \psi): \boldsymbol{S}(\mathbf{H}) \rightarrow \boldsymbol{S}(\mathbf{G})$ be the morphism in e-CPS defined by

$$
\begin{aligned}
& \varphi: \Lambda(\mathbf{H}) \rightarrow \Lambda(\mathbf{G}): \quad N \mapsto \lambda^{-1}(N) \\
& \psi_{N}: \mathbf{G} / \lambda^{-1}(N) \rightarrow \mathbf{H} / N, \text { the canonical mono induced by } \lambda,
\end{aligned}
$$

for $N \in \Lambda(\mathbf{H})$.
Conversely, define a functor $\boldsymbol{G}:(e-C P S))^{0} \rightarrow e$-PROFIN, as follows. If $(\xi):(\Lambda, \leq)^{0} \rightarrow$ $e$-FINE is an object of $e$-CPS, let $\boldsymbol{G}(\mathbb{G})$ be the profinite $e$-structure $\lim _{\alpha \in \Lambda} \mathbb{G}_{\alpha}$. Given a morphism $(\varphi, \psi)$ in $e$-CPS from $\left(\mathcal{H}:(\Lambda, \leq)^{0} \rightarrow e\right.$-FINE to $\mathscr{S}:(\Gamma, \leq)^{0} \rightarrow$ $e$-FINE we get a canonical morphism $\boldsymbol{G}(\varphi, \psi): \boldsymbol{G}(\mathfrak{S}) \rightarrow \boldsymbol{G}(\mathfrak{H})$ of profinite $e$-structures, associated to $(\varphi, \psi)$.

It is a simple exercise to verify that the pair $(\boldsymbol{S}, \boldsymbol{G})$ defines a duality between $e$ PROFIN and $e$-CPS which induces a duality between $e$-PROFINE and $e$-CPSI, as contended.

## 2. The cologic for profinite $\boldsymbol{e}$-structures

We develop in this section a cologic for profinite $e$-structures on the line of the cologic for profinite groups [7, §2].

First we define auxiliary first-order structures dual to profinite e-structures.
Definition. A projective system of (discrete) e-structures is a contravariant functor $(G)$ defined on a directed partial ordered set $(\Lambda, \leq)$ with values in the category of (discrete) $e$-structures with epis:

$$
\begin{aligned}
& \alpha \in \Lambda \mapsto \mathfrak{G}_{\alpha}, \\
& \alpha \leq \beta \mapsto \prod_{\alpha, \beta}: \mathfrak{G}_{\beta} \rightarrow \mathfrak{G}_{\alpha} .
\end{aligned}
$$

In terms of predicate calculus, a projective system of $e$-structures is a set $S$ together with the following data:
(i) A subset $\Lambda$ of $S$ and a directed partial order $\leq$ on $\Lambda$.
(ii) Some subsets $G, X_{1}, \ldots, X_{e}$ of $S$ such that $S$ is the disjoint union $\Lambda \dot{U}$ $G \dot{\cup} \bigcup_{i=1}^{e} X_{i}$.
(iii) A binary relations on $S$ which defines a map $s: G \cup \bigcup_{i=1}^{e} X_{i} \rightarrow \Lambda$ in such a way that the restriction maps $s_{0}: G \rightarrow \Lambda, s_{i}: X_{i} \rightarrow \Lambda, i=1, \ldots, e$ are onto; denote $G_{\alpha}=s_{0}^{-1}(\alpha), X_{i, \alpha}=s_{i}^{-1}(\alpha), i=1, \ldots, e, \alpha \in \Lambda$.
(iv) A ternary relation on $S$ which defines for each $\alpha \in \Lambda$ a group law - on $G_{\alpha}$.
(v) A ternary relation on $S$ which defines for each $\alpha \in \Lambda$ some maps $X_{i, \alpha} \times G_{\alpha} \rightarrow X_{i, \alpha}, i=1, \ldots, e$ in such a way that $\oiint_{\alpha}=\left(G_{\alpha} ; X_{1, \alpha}, \ldots, X_{e, \alpha}\right)$ becomes an $e$-structure.
(vi) A binary relation on $S$ which defines for arbitrary $\alpha, \beta \in \Lambda, \alpha \leq \beta$, an epi of $e$-structures $\Pi_{\alpha, \beta}: \mathscr{G}_{\beta} \rightarrow \mathscr{G}_{\alpha}$, in such a way that the maps $\alpha \mapsto \mathscr{G}_{\alpha}$ and $\alpha \leq \beta \mapsto \Pi_{\alpha, \beta}$ define a contravariant functor $(\mathbb{H}$ on $(\Lambda, \leq)$ with values in the category of $e$ structures with epis.

Let $L_{e}$ be the first-order language for such structures. Clearly the class of projective systems of $e$-structures is axiomatizable in $L_{e}$ by finitely many $V Z$-sentences. Note that an $L_{e}$-embedding doesn't define always a morphism of projective systems.

Adjoin to $L_{e}$ unary predicates $R_{n}$ for all positive integers $n$ to get a language $L_{e}^{\prime}$.
Definition. A stratified projective system of $e$-structures is an $L_{e}^{\prime}$-structure ( $S ; R_{n}$, $n \geq 1$ ) where $S$ is a projective system of $e$-structures (seen as an $L_{e}$-structure) and for each positive integer $n$,

$$
R_{n}=\Lambda^{(n)} \cup \bigcup_{\alpha \in \Lambda^{(n)}}\left(G_{\alpha} \bigcup \bigcup_{i=1}^{e} X_{i, \alpha}\right), \quad \text { with } \Lambda^{(n)}=\left\{\alpha \in \Lambda \mid\left(G_{\alpha}: 1\right) \leq n\right\} .
$$

The rank of an element $a \in S$ is the smallest $n \in \mathbb{N}$, if such $n$ exists, subject to $a \in R_{n}$. Otherwise we say that $a$ has infinite rank.

Definition. The ranked part $S^{(\omega)}$ of $S$ is the $L_{e}^{\prime}$-substructure of $S$ containing only the elements of $S$ with finite rank.

If $S^{(\omega)}$ is non-empty, then $S^{(\omega)}$ represents the maximal projective system (not necessarily directed) of finite $e$-structures contained in $S$.

Definition. A stratified projective system $S$ is ranked if $S=S^{(\omega)}$, i.e. the $L_{e}^{\prime}$ structure $S$ represents a directed projective system of finite $e$-structures.

Definition. A stratified projective system $S$ is complete if the projective system of finite $e$-structures represented by $S^{(\omega)}$ is directed and complete (see (1.2)), i.e. the next conditions are satisfied:
(i) For $n \geq 1, \alpha \in \Lambda^{(n)}$ and $N$ a normal subgroup of $G_{\alpha}$ with $\sigma(x) \notin N$ for $x \in$ $\bigcup_{i=1}^{e} X_{i, \alpha}$, there exists uniquely $\beta \in \Lambda$ such that $\beta \leq \alpha$ and $N=\operatorname{Ker} \Pi_{\beta, \alpha}$.
(ii) For $n \geq 1, \alpha, \beta \in \Lambda^{(n)}$ there is $\gamma \in \Lambda^{\left(n^{2}\right)}$ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$.

The class of complete projective systems is $L_{e}^{\prime}$-axiomatizable.
It follows that the category of complete ranked projective systems with $L_{e}^{\prime}$ embeddings may be identified with the category e-CPSI introduced in (1.2), the dual of $e$-PROFINE, by (1.2.1). We now use the duality (1.2.1) to extend the cologic for profinite groups developed in [7, §2] to a cologic for profinite $e$-structures.

We work with a fragment of the logic $\boldsymbol{L}_{e}^{\prime}$. The set of bounded ${L_{e}^{\prime}}^{\prime}$-formulas is defined as the smallest set of $L_{e}^{\prime}$-formulas containing the atomic formulas, closed under logical connectives, and closed under

$$
\Phi \mapsto(\exists x)\left(R_{n}(x) \Lambda \phi\right)
$$

where $n \in \mathbb{N}$ and $x$ is a variable.
The next lemma is immediate.
2.1. Lemma. Let $S$ be a stratified projective system, $\phi\left(x_{1}, \ldots, x_{m}\right)$ a bounded $L_{e}^{\prime}$ formula, and $a_{1}, \ldots, a_{m} \in S^{(\omega)}$. Then

$$
S=\Phi\left(a_{1}, \ldots, a_{m}\right) \quad \text { iff } \quad S^{(\omega)} \models \phi\left(a_{1}, \ldots, a_{m}\right) .
$$

Definitions. (a) A coformula (consentence) for profinite $e$-structures is a bounded $\boldsymbol{L}_{e}^{\prime}$-formula ( $\boldsymbol{L}_{e}^{\prime}$-sentence).
(b) For an $L_{e}^{\prime}$-structure $S$, the language $L_{e}^{\prime}(S)$ is the augmentation of $L_{e}^{\prime}$ by constants for $S$. We get the obvious notion of bounded $L_{e}^{\prime}(S)$-formula.
(c) A coformula over a profinite $e$-structure $\mathbf{G}$ is a bounded $\boldsymbol{L}_{e}^{\prime}(\boldsymbol{S}(\mathbf{G})$ )-formula (see (1.2) for definition of the functor $S$ ).
(d) Let $\phi\left(x_{1}, \ldots, x_{m}\right)$ be a coformula over $\mathbf{G}$ and let $a_{1}, \ldots, a_{m} \in \boldsymbol{S}(\mathbf{G}) . \mathbf{G}$ cosatisfies $\phi\left(a_{1}, \ldots, a_{m}\right)$ (written $\left.\mathbf{G}=\phi\left(a_{1}, \ldots, a_{m}\right)\right)$ if $\boldsymbol{S}(\mathbf{G}) \vDash \phi\left(a_{1}, \ldots, a_{m}\right)$.
(e) The cotheory of $\mathbf{G}($ written $\operatorname{Coth}(\mathbf{G}))$ is the set of all cosentences cosatisfied by $\mathbf{G}$.
(f) $\mathbf{G}$ and $\mathbf{H}$ are coequivalent if $\operatorname{Coth}(\mathbf{G})=\operatorname{Coth}(\mathbf{H})$.
(g) An epi $\varphi: \mathbf{G} \rightarrow \mathbf{H}$ is coelementary if the corresponding $\boldsymbol{L}_{e}^{\prime}$-embedding $\boldsymbol{S}(\varphi): \boldsymbol{S}(\mathbf{H}) \rightarrow \boldsymbol{S}(\mathbf{G})$ is $b$-elementary, i.e. $\boldsymbol{S}(\varphi)$ preserves bounded $\boldsymbol{L}_{e}^{\prime}(\boldsymbol{S}(\mathbf{H})$ )-sentences.

## 3. Co-ultraproducts of profinite $\boldsymbol{e}$-structures

Let $\left(\mathbf{G}_{\lambda}\right)_{\lambda \in \Gamma}$ be a family of profinite $e$-structures and $D$ be an ultrafilter on $\Gamma$. For each $\lambda \in \Gamma, \Lambda_{\lambda}=\Lambda\left(\mathbf{G}_{\lambda}\right)$ is the set of open normal subgroups $N$ of $G_{\lambda}$ for which $\sigma(x) \notin N$ for $x \in \bigcup_{i=1}^{e} X_{i}(\mathbf{G})$. If $N \in \Lambda_{\lambda}$, then $\mathbf{G}_{\lambda} / N$ is the finite quotient $e$-structure of $\mathbf{G}_{\lambda}$ determined by $N . \Lambda_{\lambda}$ is partially ordered by the relation $N \leq N^{\prime}$ iff $N^{\prime} \subset N$.

Form the $\boldsymbol{L}_{e}^{\prime}$-structure $\prod_{\lambda \in I} \boldsymbol{S}\left(\mathbf{G}_{\lambda}\right) / D$. This ultraproduct is a complete stratified projective system of (discrete) $e$-structures, but is not necessarily ranked. In a functorial setting, $\Pi_{\lambda \in \Gamma} \boldsymbol{S}\left(\mathbf{G}_{\lambda}\right) / D$ is a contravariant functor defined on the directed partially ordered set $\Pi_{\lambda \in \Gamma}\left(\Lambda_{\lambda}, \leq\right) / D$ with values in the category of (discrete) $e$ structures with epis, defined on objects as follows:

$$
\left(N_{\lambda}\right) / D \mapsto \prod_{\lambda \in \Gamma}\left(\mathbf{G}_{\lambda} / N_{\lambda}\right) / D .
$$

Denote by $\Pi^{\omega} \boldsymbol{S}\left(\mathbf{G}_{\lambda}\right) / D$ the ranked part $\left(\Pi \boldsymbol{S}\left(\mathbf{G}_{\lambda}\right) / D\right)^{(\omega)}$ of $\Pi \boldsymbol{S}\left(\mathbf{G}_{\lambda}\right) / D$. Then $\Pi^{\omega} \boldsymbol{S}\left(\mathbf{G}_{\lambda}\right) / D$ is a (directed) complete projective system of finite $e$-structures. The next lemma follows easily from (2.1) and Løs' Theorem.
3.1. Lemma. For each bounded $L_{e}^{\prime}$-formula $\phi\left(x_{1}, \ldots, x_{m}\right)$ and arbitrary $f_{1}, \ldots, f_{m} \in$ $\Pi \boldsymbol{S}\left(\mathbf{G}_{\lambda}\right)$ with $f_{1} / D, \ldots, f_{m} / D \in \Pi^{\omega} \boldsymbol{S}\left(\mathbf{G}_{\lambda}\right) / D$, the next statements are equivalent:

$$
\begin{equation*}
\Pi^{\omega} \boldsymbol{S}\left(\mathbf{G}_{\lambda}\right) / D \vDash \phi\left(f_{1} / D, \ldots, f_{m} / D\right), \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left\{\lambda \in \Gamma \mid S\left(\mathbf{G}_{\lambda}\right) \vDash \phi\left(f_{1}(\lambda), \ldots, f_{m}(\lambda)\right)\right\} \in D . \tag{ii}
\end{equation*}
$$

Define the co-ultraproduct $\Pi^{\omega} \mathbf{G}_{\lambda} / D$ as the profinite $e$-structure $\boldsymbol{G}\left(\Pi^{\omega} \boldsymbol{S}\left(\mathbf{G}_{\lambda}\right) / D\right)$ corresponding by duality to the complete projective system of finite $e$-structures $\Pi^{\omega} S\left(\mathbf{G}_{\lambda}\right) / D$. Moreover, we get obviously a covariant functor $\Pi^{\omega} / D: e-\operatorname{PROFIN}^{\Gamma} \rightarrow$ $e$-PROFIN inducing by restriction a covariant functor $\Pi^{\omega} / D: e$-PROFINE ${ }^{\Gamma} \rightarrow e$ PROFINE. For $\mathbf{G}_{\lambda}=\mathbf{G}$ for all $\lambda \in \Gamma$, we write $\mathbf{G}^{\omega \Gamma} / D$ instead of $\Pi^{\omega} \mathbf{G}_{\lambda} / D$, and call this profinite $e$-structure the co-ultrapower of $\mathbf{G}$ w.r.t. the pair $(\Gamma, D)$. Thus we get a covariant functor $\omega \Gamma / D: e$-PROFIN $\rightarrow e-$ PROFIN inducing by restriction a covariant functor $\omega \Gamma / D: e$-PROFINE $\rightarrow e$-PROFINE. The diagonal map $\Delta: S(\mathbf{G}) \rightarrow \boldsymbol{S}(\mathbf{G})^{\Gamma} / D$ induces by (3.1) a $b$-elementary map $\Delta: \boldsymbol{S}(\mathbf{G}) \rightarrow\left(\boldsymbol{S}(\mathbf{G})^{\Gamma} / D\right)^{(\omega)}$ and by duality a coelementary epi $\nabla: \mathbf{G}^{\omega \Gamma} / D \rightarrow \mathbf{G}$.

We end this section with a construction which is useful in Section 6. Let G be a profinite $e$-structure and let $\Gamma$ be a cofinal subset of the directed partially ordered set $\Lambda(\mathbf{G})$ of open normal subgroups $N$ of $G$ with $\sigma(x) \notin N$ for $x \in \bigcup_{i=1}^{e} X_{i}(\mathbf{G})$. Obviously $\mathbf{G} \cong \lim _{N \in \Gamma} \mathbf{G} / N$. Consider the family of sets $Z_{N}=\{U \in \Gamma \mid N \leq U\}=$ $\{U \in \Gamma \mid U \subset N\}$, for all $N \in \Gamma$. Since $\Gamma$ is cofinal in $\Lambda(\mathbf{G})$, the family $\left(Z_{N}\right)_{N \in \Gamma}$ is a filter basis on $\Gamma$. Let $D$ be an ultrafilter on $\Gamma$ containing the $Z_{N}$ 's for all $N \in \Gamma$. Consider the canonical epis $\pi_{N}: \mathbf{G} \rightarrow \mathbf{G} / N$ for $N \in \Gamma$ and define the $L_{e}^{\prime}$-embedding $\lambda: \boldsymbol{S}(\mathbf{G}) \rightarrow \prod_{N \in \Gamma} \boldsymbol{S}(\mathbf{G} / N) / D$ induced by the canonical monotone map

$$
\lambda^{\prime}:(\Gamma, \leq) \rightarrow \prod_{N \in \Gamma} \Lambda(\mathbf{G} / N) / D: \quad U \mapsto(U N / N) / D .
$$

Clearly $\lambda^{\prime}$ is injective and for each $U \in \Gamma$, the canonical morphism $\mathbf{G} / U \rightarrow$ $\Pi_{N \in \Gamma}(\mathbf{G} / U N) / D$ is an isomorphism since $\Pi_{N \in \Gamma}(\mathbf{G} / U N) / D \cong(\mathbf{G} / U)^{\Gamma} / D \cong \mathbf{G} / U$ as $G / U$ is finite.

The $L_{e}^{\prime}$-embedding induces by restriction to ranked parts the $L_{e}^{\prime}$-embedding

$$
\lambda: S(G) \rightarrow \prod_{N \in \Gamma}^{\omega} S(\mathbf{G} / N) / D .
$$

By duality we get a canonical epi of profinite $e$-structures

$$
\boldsymbol{G}(\lambda): \prod_{N \in \Gamma}^{\omega}(\mathbf{G} / N) / D \rightarrow \mathbf{G} .
$$

## 4. Projective profinite $\boldsymbol{e}$-structures

A profinite $e$-structure $\mathbf{G}$ is projective if every diagram of profinite $e$-structures

with $\psi$ epi, can be completed to a commutative diagram by a morphism $\theta: \mathbf{G} \rightarrow \mathbf{E}$. (We say that the extension problem (1) has a solution $\theta$ ).

In the following we give a characterization of projective profinite $e$-structures.
4.1. Proposition. Let $\mathbf{G}$ be a profinite e-structure. The next statements are equivalent:
(i) $\mathbf{G}$ is projective.
(ii) Every epi $\psi: \mathbf{E} \rightarrow \mathbf{G}$ splits, i.e. there is $i: \mathbf{G} \rightarrow \mathbf{E}$ with $\psi i=1_{\mathbf{G}}$.
(iii) For each epi $\psi: \mathbf{E} \rightarrow \mathbf{G}$ there exist a coelementary epi $p: \mathbf{G}^{*} \rightarrow \mathbf{G}$ and a morphism $\theta: \mathbf{G}^{*} \rightarrow \mathbf{E}$ such that $p=\psi \theta$.
(iv) Every extension problem (1) with $\varphi, \psi$ epis and $\mathbf{E}$ finite has a solution $\theta: \mathbf{G} \rightarrow \mathbf{E}$.

Proof. (i) $\rightarrow$ (ii) is trivial.
(ii) $\rightarrow$ (iii) is immediate. Take $\mathbf{G}^{*}=\mathbf{G}$ and $p=1_{\mathbf{G}}$.
(iii) $\rightarrow$ (iv) Consider the diagram (1) with $\varphi, \psi$ epis, $\mathbf{E}$ finite. By assumption we get a commutative diagram

where ( $\mathbf{T} ; \psi^{\prime}, \varphi^{\prime}$ ) with $\psi^{\prime}, \varphi^{\prime}$ epis is the pullback of the pair ( $\varphi, \psi$ ) and $p$ is a coelementary epi. Now, the existence of a solution $\theta$ for the extension problem (1) is obviously equivalent to the fact that $\mathbf{G}$ cosatisfies certain cosentence $\phi$ over $\mathbf{G}$. Since $\varphi^{\prime} \theta^{\prime}$ is a solution of the extension problem derived from (1)

it follows $\mathbf{G}^{*} \neq \phi$. As $p$ is a coelementary epi we get finally $\mathbf{G} \Rightarrow \phi$.
(iv) $\rightarrow$ (i). First observe that (iv) is equivalent with the next statement.
(iv') Every extension problem (1) with $\psi$ epi, $\mathbf{E}$ finite has a solution.
Indeed it suffices to apply (iv) to the extension problem

where the projection $\psi^{\prime}$ is epi since $\psi$ is so.
Next consider the diagram (1) with $\psi$ epi and assume that the kernel $A$ of the epi $\psi: E \rightarrow H$ is finite. As $A$ is a closed normal subgroup of $E$, there is an open normal subgroup $N$ of $E$ with $N \cap A=1$. We may assume $\psi(N) \in \Lambda(\mathbf{H})$, i.e. $\sigma(x) \nsubseteq N$ for all $x \in \bigcup_{i=1}^{e} X_{i}(\mathbf{H})$. We get the canonical commutative diagram


Since $\mathbf{E} / N$ is finite, we get by (iv') some $\theta^{\prime}: \mathbf{G} \rightarrow \mathbf{E} / N$ with $\pi \varphi=\psi^{\prime} \theta^{\prime}$. By universality of pullbacks, there is uniquely $\theta: \mathbf{G} \rightarrow \mathbf{E}$ with $\varphi=\psi \theta$ and $\theta^{\prime}=\pi^{\prime} \theta$.

Finally, consider an arbitrary diagram (1) with $\psi$ epi, and let $S$ be the set of pairs ( $N, \lambda$ ), where $N$ is a closed subgroup of $A=\operatorname{Ker} \psi$ which is normal in $E$ and $\lambda: \mathbf{G} \rightarrow \mathbf{E} / N$ is a morphism such that $\varphi=\psi_{N} \lambda$, with $\psi_{N}: \mathbf{E} / N \rightarrow \mathbf{H}$ induced by $\psi$. The set $S$ is non-empty since $(A, \varphi) \in S$. Define a partial order on $S$ by: $\left(N_{1}, \lambda_{1}\right) \leqslant\left(N_{2}, \lambda_{2}\right)$ iff $N_{2} \subset N_{1}$ and $\lambda_{1}=\pi_{N_{2}, N_{1}} \lambda_{2}$, where $\pi_{N_{2}, N_{1}}: \mathbf{E} / N_{2} \rightarrow \mathbf{E} / N_{1}$ is canonic. $S$ is inductive w.r.t. the order $\leq$. Let ( $N, \lambda$ ) be a maximal pair in $S$. If $N \neq 1$, then there exists by [18, Ch.I, Lemma 5], a proper open subgroup $N^{\prime}$ of $N$ which is normal in $E$. Then $N / N^{\prime}$ is finite and so there is $\lambda^{\prime}: \mathbf{G} \rightarrow \mathbf{E} / N^{\prime}$ with $\lambda=\psi^{\prime} \lambda^{\prime}$, where $\psi^{\prime}: \mathbf{E} / N^{\prime} \rightarrow \mathbf{E} / N$ is canonic. We get $\left(N^{\prime}, \lambda^{\prime}\right) \in S$ and $\left(N^{\prime}, \lambda^{\prime}\right)>(N, \lambda)$ contrary to maximality of $(N, \lambda)$. Consequently $N=1$ and $\varphi=\psi \lambda$.

Remark. It is shown in [5, Theorem 3.1] that the statements (i)-(iv) above are also equivalent with the following one.
(v) Every extension problem (1), with $\mathbf{E}$ finite, $\psi$ Frattini cover of $\mathbf{H}$ (i.e. there is no proper sub-e-structure $\mathbf{E}^{\prime}$ of $\mathbf{E}$ such that the restriction $\psi / \mathbf{E}^{\prime}: \mathbf{E}^{\prime} \rightarrow \mathbf{H}$ is epi) and $A=\operatorname{Ker} \psi$ abelian minimal normal subgroup of $E$, has a solution.

It is obtained in this way a suitable generalization of a well known characterization of projective profinite groups [12, Proposition 1].

We end this section with a lemma which is useful in Section 6.
4.2. Lemma. Let $\mathbf{G}$ be a projective profinite e-structure. Then $\mathbb{Z}_{2}$ is a quotient estructure of $\mathbf{G}$.

Proof. For all $i=1, \ldots, e$, fix some $x_{i} \in X_{i}(\mathbf{G})$, and let $\sigma_{i}=\sigma\left(x_{i}\right)$. Let $\mathbf{E}$ be the profinite $e$-structure with underlying profinite group $E=G \times \mathbb{Z} / 2 \mathbb{Z}$, and $E$-sets $X_{i}(\mathbf{E})=$ $H_{i} \backslash E$ where $H_{i}$ is the cyclic group of order 2 of $E$ generated by the involution $\left(\sigma_{i}, 1+2 \mathbb{Z}\right), i=1, \ldots, e$. The action of $E$ on $X_{i}(\mathbf{E})$ is given by: $\left(H_{i}(g, \tau),\left(g^{\prime}, \tau^{\prime}\right)\right)-$ $H_{i}\left(g g^{\prime}, \tau+\tau^{\prime}\right)$, for $g, g^{\prime} \in G, \tau, \tau^{\prime} \in \mathbb{Z} / 2 \mathbb{Z}$. The profinite $e$-structure $\mathbf{E}$ with the epis $p_{1}: \mathbf{E} \rightarrow \mathbf{G}, \quad p_{2}: \mathbf{E} \rightarrow \mathbb{Z}_{2}$ given by $p_{1}^{0}(g, \tau)=g, \quad p_{2}^{0}(g, \tau)=\tau, \quad p_{1}^{i}\left(H_{i}(g, \tau)\right)=x_{i}^{g}$, $p_{2}^{i}\left(H_{i}(\mathrm{~g}, \tau)\right)=*, i=1, \ldots, e$, is a direct product of $\mathbf{G}$ and $\mathbb{Z}_{2}$. As $\mathbf{G}$ is projective there is a mono $\eta: \mathbf{G} \rightarrow \mathbf{E}$ splitting $p_{1}$, i.e. $p_{1} \eta=1_{\mathbf{G}}$. Thus we get a morphism $p_{2} \eta: \mathbf{G} \rightarrow \mathbb{Z}_{2}$. Since the morphisms of $e$-structures taking values in $\mathbb{Z}_{2}$ are epis, we conclude that $\mathbb{Z}_{2}$ is a quotient $e$-structure of $\mathbf{G}$.

## 5. From $e$-fold ordered fields to profinite $e$-structures

Let $\mathbf{K}=\left(K ; P_{1}, \ldots, P_{e}\right)$ be an $e$-field, $e \geq 1$, and $L$ be a Galois extension of $K$ such that $L$ is not formally real ( fr ) over the ordered fields $\left(K, P_{i}\right), i=1, \ldots, e$. We naturally assign to the pair $(\mathbf{K}, L)$ a profinite $e$-structure $\mathbf{G}(L / \mathbf{K})=(G(L / K)$; $\left.X_{1}(L / \mathbf{K}), \ldots, X_{e}(L / \mathbf{K})\right)$ called the Galois e-structure of $L / \mathbf{K}$. The underlying group of $\mathbf{G}(L / \mathbf{K})$ is the Galois group $G(L / K)$ of $L$ over $K, X_{i}(L / \mathbf{K})$ is the set of pairs ( $\sigma, Q$ ), $\sigma$ an involution of $G(L / K), Q$ an order extending $P_{i}$ on the fixed field $L(\sigma)$, and the action $X_{i}(L / \mathbf{K}) \times G(L / K) \rightarrow X_{i}(L / K)$ is given by $((\sigma, Q), \tau) \mapsto\left(\sigma^{\tau}, Q^{\tau}\right)$ with $\sigma^{\tau}=\tau^{-1} \sigma \tau, Q^{\tau}=\left\{a^{\tau}:=\tau(a) \mid a \in Q\right\}$. It follows easily that the invariant subgroup of some $(\sigma, Q) \in X_{i}(L / K)$ is the cyclic group of $G(L / K)$ generated by the involution $\sigma$. Note that $\mathbf{G}(L / \mathbf{K})$ is the projective limit $\lim _{\leftarrow} \mathbf{G}(E / \mathbf{K})$ of finite $e$-structures, where $E$ ranges over all finite Galois extensions of $K$ with $E \subset L$ and $E$ is not fr over ( $K, P_{i}$ ), $i=1, \ldots, e$.

In particular, if $L=\tilde{K}$ is the algebraic closure of $K$, we get the absolute Galois estructure $\mathbf{G}(\mathbf{K})=\mathbf{G}(\tilde{K} / \mathbf{K})$ of the $e$-field $\mathbf{K}$. Note that $X_{i}(\mathbf{K})=X_{i}(\tilde{K} / \mathbf{K})$ is identified with the set of involutions $\sigma$ of $G(K)=G(\tilde{K} / K)$ for which the fixed field $\tilde{K}(\sigma)$ is a ral closure of ( $K, P_{i}$ ), $i=1, \ldots, e$.
Denote by $F_{e}$ the first-order language of $e$-fields. $F_{e}$ is an extension of the language $\left(+,-, ., 0,1\right.$ ) of rings with $e$ unary predicates $\pi_{1}, \ldots, \pi_{e}$ standing for orders.

A basic fact is that the cotheory of $\mathbf{G}(\mathbf{K}), \mathbf{K}$ an $e$-field, is interpretable in $\mathbf{K}$, as follows from the next analogue of [7] Lemma 17.
5.1. Proposition. There is a recursive map $\phi \mapsto \hat{\phi}$ from cosentences to $\boldsymbol{F}_{e}$-sentences
such that for every cosentence $\phi$ and every e-field $\mathbf{K}, \mathbf{G}(\mathbf{K}) \neq \phi$ iff $\mathbf{K} \vDash \phi$.

Proof. The statement is a consequence of the following facts:
(1) Under the Galois duality $L \mapsto G(L)$, the following objects are in 1-1 correspondence: finite Galois extension $L / K$, with $[L: K]=m$ and $L$ not fr over $\left(K, P_{i}\right), i=1, \ldots, e$, and open normal subgroups $N \in \Lambda(\mathbf{G}(K))$ (i.e. $N \cap \bigcup_{i=1}^{e} X_{i}(\mathbf{K})$ is empty) with $(G(K): N)=m$.
(2) Coding finite extensions of $K$ in $K$ : For each $m$, let us fix the basis $\left(b_{1}, \ldots, b_{m}\right)$ of $K^{m}$ by $b_{i}=(0, \ldots, 1,0, \ldots, 0)$ with 1 on the $i$ th place. Then a point $\left(c_{i j k}\right)_{i, j, k \leq m}=c \in K^{m^{3}}$ uniquely determines an $m$-dimensional $K$-algebra $A c$. It follows via the splitting field criterion that the $c$ such that $A c$ is a Galois extension of $K$ form a first-order definable subset of $K^{m^{3}}$. Moreover, the $(c, d) \in K^{m^{3}} \times K^{n^{3}}$ for which $A c, A d$ are Galois extensions of $K$ and $A c$ is $K$-embeddable in $A d$ form a first-order definable subset of $K^{m^{3}} \times K^{n^{3}}$.
(3) For each finite $e$-structure $\mathbf{G}$, the $c \in K^{m^{3}}$ for which $A c$ is a Galois extension of $K$, not fr over $\left(K, P_{i}\right), i=1, \ldots, e$, and $\mathbf{G}(A c / \mathbf{K}) \cong \mathbf{G}$ form an $F_{e}$-definable subset of $K^{m^{3}}$. Indeed, the condition " $A c$ is not fr over $\left(K, P_{i}\right)$ " is equivalent to the existence of some $z \in A c$ such that the minimal polynomial of $z$ over $K$ has no roots in the real closure ( $\overline{K, P_{i}}$ ) of ( $K, P_{i}$ ). On the other hand the condition 'the subfield $A d$ of $A c$ as above is maximal with the property that $A d$ is fr over ( $K, P_{i}$ ) and there are $k$ distinct orders extending $P_{i}$ on $A d$ " is equivalent to the fact that $[A c: A d]=2, A d=K[z]$ and the minimal polynomial of $z$ over $K$ has $k$ distinct roots in $\left(\overline{K, P_{i}}\right)$. Note that the statements above may be translated in the language of ( $K ; P_{1}, \ldots, P_{e}$ ) thanks to elimination of quantifiers for real closed fields.

The next result is a generalization of [7, Lemma 19].
5.2. Lemma. Let $D$ be an ultrafilter on the index set $\Gamma$, and $\mathbf{K}_{\gamma}=\left(K_{\gamma} ; P_{1, \gamma}, \ldots, P_{e, \gamma}\right)$, $\gamma \in \Gamma$, be e-fields. For each $\gamma \in \Gamma$, let $L_{\gamma}$ be a Galois extension of $K_{\gamma}$ such that $L_{\gamma}$ is not fr over ( $K_{\gamma}, P_{i, \gamma}$ ), $i=1, \ldots$, . Assume that there exists $m \in \mathbb{N}$ such that for almost all (relative to $D$ ) $\gamma \in \Gamma$, there exists a finite Galois extension $M_{\gamma}$ of $K_{\gamma}$, contained in $L_{\gamma}$, which is not fr over $\left(K_{\gamma}, P_{i, \gamma}\right), i=1, \ldots, e$, with $\left[M_{\gamma}: K_{\gamma}\right] \leq m$.

Denote by $\mathbf{K}=\left(K ; P_{1}, \ldots, P_{e}\right)$ the ultraproduct $\Pi \mathbf{K}_{\gamma} / D$ and by $L$ the algebraic closure of $K$ in $\Pi L_{\gamma} / D$. Then $L$ is Galois over $K$ and not fr over $\left(K, P_{i}\right), i=1, \ldots, e$, and $\mathbf{G}(L / \mathbf{K})$ is canonically isomorphic to the co-ultraproduct $\Pi^{\alpha} G\left(L_{\gamma} / \mathbf{K}_{\gamma}\right) / D$.

Proof. The statement follows from the next facts, which are consequences of Løs' theorem and elimination of quantifiers for real closed fields:
(1) A Galois extension of $\Pi K_{\gamma} / D$ of degree $n$, contained in $\Pi L_{\gamma} / D$, can be identified with some $\Pi N_{\gamma} / D$, where $N_{\gamma}$ is a Galois extension of $K_{\gamma}$, contained in $L_{\gamma}$, which is for almost all (relative to $D$ ) $\gamma \in \Gamma$ of degree $n$ over $K_{\gamma}$.
(2) In the above, $\Pi N_{\gamma} / D$ is not fr over ( $K, P_{i}$ ), $i=1, \ldots, e$, iff $N_{\gamma}$ is not fr over ( $K_{\gamma}, P_{i, \gamma}$ ), $i=1, \ldots, e$, for almost all $\gamma \in \Gamma$. In this case, the finite $e$-structure $\mathbf{G}\left(\Pi N_{\gamma} / D \mid \mathbf{K}\right)$ is naturally isomorphic to $\Pi \mathbf{G}\left(N_{\gamma} / \mathbf{K}_{\gamma}\right) / D$.
5.3. Corollary. Let $D$ be an ultrafilter on the index set $\Gamma$ and $\mathbf{K}_{\gamma}, \gamma \in \Gamma$, be e-fields. Then $\mathbf{G}\left(\Pi \mathbf{K}_{\gamma} / D\right)$ is canonically isomorphic to $\Pi^{\omega} \mathbf{G}\left(\mathbf{K}_{\gamma}\right) / D$.

## 6. Proof of the main results

In order to prove the two main results of the paper we need the following lemma, a non-trivial generalization of [11, Lemma 1.1], [3, II, Lemma 4.1].
6.1. Lemma. Let $\mathbf{K}=\left(K ; P_{1}, \ldots, P_{e}\right)$ be an e-field, L a Galois extension of $K$ which is not fr over $\left(K, P_{i}\right), i=1, \ldots, e, \mathbf{G}$ a profinite e-structure and $\psi: \mathbf{G} \rightarrow \mathbf{G}(L / \mathbf{K})$ an epi. Then there exist an extension $\mathbf{E}=\left(E ; Q_{1}, \ldots, Q_{e}\right)$ of $\mathbf{K}$, with $E$ regular over $K$, $a$ Galois extension $F$ of $E$ such that $L$ is the algebraic closure of $K$ in $F$ (in particular, $F$ is not fr over $\left.\left(E, Q_{i}\right), i=1, \ldots, e\right)$ and an isomorphism $\eta: \mathbf{G} \rightarrow \mathbf{G}(F / \mathbf{E})$ such that the next diagram is commutative


Proof. (a) First, let us consider the finite case, i.e. assume $\mathbf{G}(L / K)$ and $\mathbf{G}$ are finite. Let $U=\left\{u^{g} \mid g \in G\right\}$ be a set of $|G|$ algebraically independent elements over $K$. The group $G$ acts on $U$ from the right in an obvious manner. It also acts on $L$ through $\psi$ by the formula $a^{g}=a^{\psi(g)}$. Consequently, $G$ acts on the field of rational functions $F=L(U)$. Let $E$ be the fixed field of $G$ in $F$. It follows that $E \cap L=K$ and $L E$ is regular over $L$, as a subfield of a rational function field over $L$, and hence $E$ is regular over $K$. Now let us identify the group $G$ with $G(F / E)$ in the obvious manner and the group epi $\psi: G \rightarrow G(L / K)$ with the restriction res : $G(F / E) \rightarrow G(L / K)$. It remains to show that there are some orders $Q_{i}$ of $E$ such that $Q_{i}$ extends $P_{i}$, $i=1, \ldots, e$, and the identity group isomorphism $1_{G}$ extends to an isomorphism $\eta: \mathbf{G} \rightarrow G(F / \mathbf{E})$ of $e$-structures in such a way that the diagram (1) commutes.

Fix some $x_{i} \in X_{i}(\mathbf{G}), i=1, \ldots, e$, and let $\sigma_{i}=\sigma\left(x_{i}\right) \in G=G(F / E)$. Then $\psi\left(x_{i}\right)=$ ( $\tau_{i}, P_{i}^{\prime}$ ), where $\tau_{i}$ is an involution of $G(L / K)$ which coincides with the restriction of $\sigma_{i}$ on $L$ and $P_{i}^{\prime}$ is an order extending $P_{i}$ on the fixed field $L\left(\tau_{i}\right)$ of $\tau_{i}$ in $L$. So it suffices to extend $P_{i}^{\prime}$ to an order $Q_{i}^{\prime}$ on the fixed field $F\left(\sigma_{i}\right)$ of $\sigma_{i}$ in $F$, take the restriction $Q_{i}$ of $Q_{i}^{\prime}$ on $E$ and define

$$
\eta\left(x_{i}^{\lambda}\right)=\left(\sigma_{i}^{\lambda}, Q_{i}^{\prime \lambda}\right) \text { for } \lambda \in G=G(F / E), \quad i=1, \ldots, e .
$$

Fix some $i \in\{1, \ldots, e\}$ and let $M=L\left(\tau_{i}\right)$. Then there exists $a \in L \backslash M$ such that $L=M[a]$ and $-a^{2} \in P_{i}^{\prime} . \sigma_{i}$ acts obviously on the field of rational functions $M(U)$. Let $N \supset M$ be the fixed field of $\sigma_{i}$ in $M(U)$.

First let us show that $F\left(\sigma_{i}\right)=N\left[a\left(u^{1}-u^{\sigma_{i}}\right)\right]$. Each element of $F$ can be uniquely written in the form $f+a f^{\prime}$ with $f, f^{\prime} \in M(U)$. Let $f+a f^{\prime} \in F\left(\sigma_{i}\right)$. Then $f+a f^{\prime}=$ $\left(f+a f^{\prime}\right)^{\sigma_{i}}=f^{\sigma_{i}}-a f^{\prime \sigma_{i}}$, and hence $f^{\sigma_{i}}=f$ and $f^{\prime \sigma_{i}}=-f^{\prime}$. Thus we get

$$
f+a f^{\prime}=f+a\left(u^{1}-u^{\sigma_{i}}\right)\left(f^{\prime} /\left(u^{1}-u^{\sigma_{i}}\right)\right) \in N\left[a\left(u^{1}-u^{\sigma_{i}}\right)\right]
$$

since $f \in N$ and $f^{\prime} /\left(u^{1}-u^{\sigma_{i}}\right) \in N$.
In order to extend $P_{i}$ to an order $Q_{i}^{\prime}$ of $F\left(\sigma_{i}\right)$, it suffices to extend $P_{i}^{\prime}$ to an order $Q_{i}^{\prime \prime}$ of $N$ in such a way that $\left(u^{1}-u^{\sigma_{i}}\right)^{2} \in-Q_{i}^{\prime \prime}$. For, if so, then $\left(a\left(u^{1}-u^{\sigma_{i}}\right)\right)^{2} \in Q_{i}^{\prime \prime}$, i.e. $F\left(\sigma_{i}\right)$ is fr over ( $N, Q_{i}^{\prime \prime}$ ).

Consider the tower of fields

$$
M \subset S \subset N \subset M(U)
$$

where

$$
S=M\left(u^{\lambda}+u^{\lambda \sigma_{i}}, u^{\lambda} u^{\lambda \sigma_{i}} \mid \lambda \in G\right)=M\left(u^{\lambda}+u^{\lambda \sigma_{i}}\left(u^{\lambda}-u^{\lambda \sigma_{i}}\right)^{2} \mid \lambda \in G\right)
$$

As the transcendency degree of $M(U) / M$ is $|G|$ and $M(U)=S\left[u^{\lambda} \mid \lambda \in G\right]$ with the $u^{\lambda}$ algebraic over $S$, it follows that $S / M$ is purely transcendental and the set $\left\{u^{\lambda}+u^{\lambda \sigma_{i}},\left(u^{\lambda}-u^{\lambda \sigma_{i}}\right)^{2} \mid \lambda \in G\right\}$ is a transcendency basis of $M(U) / M$. Consequently, there exists some order $Q^{\prime \prime \prime}$ of $S$ such that $Q^{\prime \prime \prime}$ extends $P_{i}^{\prime}$ and $\left(u^{\lambda}-u^{\lambda \sigma_{i}}\right)^{2} \in-Q^{\prime \prime \prime}$ for all $\lambda \in G$. Let $Q^{\prime \prime \prime}$ be such an order. It remains to show that $N$ is fr over ( $S, Q^{\prime \prime \prime}$ ).

Let $N^{\prime}=S\left[\left(u^{\lambda}-u^{\lambda \sigma_{i}}\right)\left(u^{1}-u^{\sigma_{i}}\right) \mid \lambda \in G\right]$. Let us show that $N^{\prime}=N$. The inclusion $N^{\prime} \subset N$ is trivial, so it remains to verify that $\left[M(U): N^{\prime}\right]=2$. Since $\left[N^{\prime}\left[u^{1}\right]: N^{\prime}\right]=2$, it suffices to show that $M(U)=N^{\prime}\left(u^{1}\right]$. However the latter equality is a consequence of the identities $u^{\lambda}=\alpha_{\lambda}+\beta_{\lambda} u^{1}, \lambda \in G$, with

$$
\begin{aligned}
& \beta_{\lambda}=\frac{u^{\lambda}-u^{\lambda \sigma_{i}}}{u^{1}-u^{\sigma_{i}}}=\frac{\left(u^{\lambda}-u^{\lambda \sigma_{i}}\right)\left(u^{1}-u^{\sigma_{i}}\right)}{\left(u^{1}-u^{\sigma_{i}}\right)^{2}} \in N^{\prime}, \\
& \alpha_{\lambda}=\frac{u^{1} u^{\lambda \sigma_{i}}-u^{\sigma_{i}} u^{\lambda}}{u^{1}-u^{\sigma_{i}}}=\frac{\left(u^{\lambda}+u^{\lambda \sigma_{i}}\right)-\beta_{\lambda}\left(u^{1}+u^{\sigma_{i}}\right)}{2} \in N^{\prime} .
\end{aligned}
$$

Thus we get $N^{\prime}=N$.
Let $\zeta_{\lambda}=\left(u^{\lambda}-u^{\lambda \sigma_{i}}\right)\left(u^{1}-u^{\sigma_{i}}\right), \lambda \in G$, and so $N=S\left[\zeta_{\lambda} \mid \lambda \in G\right]$. Let us show that the degree of $S\left[\zeta_{\lambda}\right]=S\left[\zeta_{\lambda \sigma_{i}}\right]$ over $S$ is 2 for $\lambda \neq 1, \lambda \neq \sigma_{i}$. Obviously, $\zeta_{\lambda}^{2} \in S$. On the other hand, $\zeta_{\lambda} \notin S$ for $\lambda \neq 1, \lambda \neq \sigma_{i}$, since $u^{\lambda}-u^{\lambda \sigma_{i}}$ and $u^{1}-u^{\sigma_{i}}$ are algebraically independent over $M$ and the polynomial $W^{2}-Y Z \in M(Y, Z)[W]$ is irreducible. As $\zeta_{\lambda}^{2}=\left[-\left(u^{\lambda}-u^{\lambda \sigma_{i}}\right)^{2}\right]\left[-\left(u^{1}-u^{\sigma_{i}}\right)^{2}\right] \in Q^{\prime \prime \prime}$, the order $Q^{\prime \prime \prime}$ of $S$ can be extended to an order of $N$, as contended.
(b) Now let ds consider the general case. Let $\Gamma$ be the subset of $\Lambda(\mathbf{G})$ consisting of those $N$ with $\psi(N) \in \Lambda\left(\mathbf{G}(L / K)\right.$, i.e. the fixed field $L_{N}$ of $\psi(N)$ in $L$ is a finite Galois extension of $K$ which is not fre over $\left(K, P_{i}\right), i=1, \ldots, e . \Gamma$ is cofinal in $\Lambda(\mathbf{G})$,
where the epis $\psi_{N}: \mathbf{G} / N \rightarrow \mathbf{G}\left(L_{N} / \mathbf{K}\right)$ are induced by $\psi$. Using the construction from Section 3 we get a commutative diagram of epis for a suitable ultrafilter $D$ on $\Gamma$


On the other hand, by the first part of the proof, we get for each $N \in \Gamma$ an extension $\mathbf{E}_{N}=\left(E_{N} ; Q_{1, N}, \ldots, Q_{e, N}\right)$ of $\mathbf{K}$ with $E_{N}$ regular over $K$, and a finite Galois extension $F_{N}$ of $E_{N}$ in such a way that $L_{N}$ is the algebraic closure of $K$ in $E_{N}$, the $e$-structure $\mathbf{G}\left(F_{N} / \mathbf{E}_{N}\right)$ is identified with $\mathbf{G} / N$ and the epi $\psi_{N}$ is identified with the restriction res: $\mathbf{G}\left(F_{N} / \mathbf{E}_{N}\right) \rightarrow \mathbf{G}\left(L_{N} \mid \mathbf{K}\right)$. Let $\mathbf{K}^{*}=\left(K^{*} ; P_{1}^{*}, \ldots, P_{e}^{*}\right)=\mathbf{K}^{\Gamma} / D, \mathbf{E}=\left(E ; Q_{1}, \ldots, Q_{e}\right)=$ $\Pi \mathbf{E}_{N} / D, L^{*}$ be the algebraic closure of $K^{*}$ in $\Pi L_{N} / D$ and $M$ be the algebraic closure of $E$ in $\Pi E_{N} / D$. Consider the diagram of fields


We get easily that the extensions $E / K, E / K^{*}, M / L$ and $M / L^{*}$ are regular. Fix some $U$ in $\Gamma$ and let $(G: U)=m$. Since, by choice of $D,\{V \in \Gamma \mid U \leq V\} \in D$ it follows that for almost all $N \in \Gamma, F_{N}$ contains a subfield which is Galois over $E_{N}$, not fr over $\left(E_{N}, Q_{i, N}\right), i=1, \ldots, e$, and of degree over $E_{N}$ bounded by $m$. Consequently, by (5.2), the Galois extension $M$ of $E$ is not fr over $\left(E, Q_{i}\right), i=1, \ldots, e$, and $\mathbf{G}(M / \mathbf{E})$ is canonically isomorphic to $\Pi^{\omega} \mathbf{G}\left(F_{N} / \mathbf{E}_{N}\right) / D \cong \Pi^{\omega}(\mathbf{G} / N) / D$. Similarly, the Galois extension $L^{*}$ of $K^{*}$ is not fr over $\left(K^{*}, P_{i}^{*}\right), i=1, \ldots, e$ and $\mathbf{G}\left(L^{*} / \mathbf{K}^{*}\right)$ is canonically isomorphic to $\Pi^{\omega} \mathbf{G}\left(L_{N} / \mathbf{K}\right) / D$. From (2) and (3) we get the commutative diagram of epis


It remains to take $F$ the fixed field of $\operatorname{Ker} \theta$ in $M / E$ to get a Galois extension $F$ of $E$ such that $L$ is the algebraic closure of $K$ in $F$ and $\mathbf{G}(F / \mathbf{E})$, res: $\mathbf{G}(F / \mathbf{E}) \rightarrow \mathbf{G}(L / \mathbf{K})$ are respectively identified with $\mathbf{G}$ and $\psi$, as contended.
6.2. Proof of Theorem I. Let $\mathbf{K}=\left(K ; P_{1}, \ldots, P_{e}\right)$ be a prc $e$-field. We have to show that $\mathbf{G}(\mathbf{K})$ is projective. According to (4.1) it suffices to show that for every epi
$\psi: \mathbf{G} \rightarrow \mathbf{G}(\mathbf{K})$ there exist a coelementary epi $p: \mathbf{T} \rightarrow \mathbf{G}(\mathbf{K})$ and a morphism $\theta: \mathbf{T} \rightarrow \mathbf{G}$ such that $p=\psi \theta$. Given an epi $\psi: \mathbf{G} \rightarrow \mathbf{G}(\mathbf{K})$ it follows by (6.1) that there exist an extension $\mathbf{E}=\left(E ; Q_{1}, \ldots, Q_{e}\right)$ of $\mathbf{K}$, with $E$ regular over $K$ and a subfield $F$ of the algebraic closure $\tilde{E}$ of $E$ such that the algebraic closure $\tilde{K}$ of $K$ is contained in $F$, $F$ is Galois over $E$, and $\mathbf{G}(F / \mathbf{E})$, res: $\mathbf{G}(F / \mathbf{E}) \rightarrow \mathbf{G}(\mathbf{K})$ are respectively identified with $\mathbf{G}$ and $\psi$. Since, by assumption, $\mathbf{K}$ is a prc $e$-field, it follows that $\mathbf{K}$ is ec in $\mathbf{E}$ and hence by Scott's lemma [6, Lemma 8.1.3, Corollary 9.3.11], E can be embedded over $\mathbf{K}$ into an elementary extension $\mathbf{K}^{*}$ of $\mathbf{K}$. Thus we get the canonical commutative diagram of profinite $e$-structures

where the restriction $\theta$ is not necessarily an epi. Finally note that the restriction $p$ is a coelementary epi according to (5.1).

Remark. A tentative to prove the theorem above in the special case $e=1$ is due to McKenna [15] but unfortunately the proof of [15, Theorem 1.1] contains a mistake, though the respective statement is correct. The error occurs at page 1.6 , where the Hoschild-Serre sequence contains the incorrect term $H^{2}(N, u)$ instead of the correct one $H^{1}\left(\bar{\pi}, H^{1}\left(G_{K}(2), u\right)\right)$. By contrast with McKenna's intricate approach which requires Galois cohomology, the proof given here is quite simple and of modeltheoretic nature.

Finally let us prove the second main result of the paper, which gives a characterization of profinite $e$-structures which can be realized as absolute Galois $e$ structures over prc $e$-fields.

First we prove a little more general result.
6.3. Theorem. Let $K=\left(K ; P_{1}, \ldots, P_{e}\right)$ be an e-field, $L$ a Galois extension of $K$ such that $L$ is not fr over $\left(K, P_{i}\right), i=1, \ldots, e, \mathbf{G}$ a profinite $e$-structure and $\psi: \mathbf{G} \rightarrow \mathbf{G}(L / \mathbf{K})$ an epi. Then the next statements are equivalent:
(i) There exist an e-field extension $\mathbf{E}$ of $\mathbf{K}$ and an isomorphism $\theta: \mathbf{G} \rightarrow \mathbf{G}(\mathbf{E})$ such that $\mathbf{E}$ is a prc e-field, $E \cap L=K$ and the diagram

is commutative.
(ii) G is projective.

Proof. (i) $\rightarrow$ (ii) follows by (6.2).
(ii) $\rightarrow$ (i). Assume $\mathbf{G}$ is projective. By (6.1), there exist a regular $e$-field extension $\mathbf{K}^{\prime}$ of $\mathbf{K}$ and a Galois extension $L^{\prime}$ of $K^{\prime}$ such that $L$ is the algebraic closure of $K$ in $L^{\prime}$ and the restriction res: $\mathbf{G}\left(L^{\prime} / \mathbf{K}^{\prime}\right) \rightarrow \mathbf{G}(L / \mathbf{K})$ is identified with the epi $\psi$. According to [17, Theorem 1.1] there exists a regular $e$-field extension $\mathbf{M}=\left(M ; Q_{1}, \ldots, Q_{e}\right)$ of $\mathbf{K}^{\prime}$ such that $\mathbf{M}$ is a prc $e$-field. Consider the commutative diagram

where $\lambda$ and $\varphi$ are restriction epis. As $\mathbf{G}$ is projective, there exists a mono $\mu: \mathbf{G} \rightarrow \mathbf{G}(\mathbf{M})$ splitting $\lambda$. Note that for each involution $\tau$ of $G$ there is some $x \in \bigcup_{i=1}^{e} X_{i}(\mathbf{G})$ with $\tau=\sigma(x)$. Indeed $\mu(\tau)$ is an involution of $G(M)$ and hence $\mu(\tau) \in \bigcup_{i=1}^{e} X_{i}(\mathbf{M})$ since $Q_{1}, \ldots, Q_{e}$ are the only orders of $M$. Assume $\mu(\tau) \in X_{i}(\mathbf{M})$. Then we get

$$
\tau=\lambda^{0}(\mu(\tau))=\lambda^{0}(\sigma(\mu(\tau)))=\sigma\left(\lambda^{i}(\mu(\tau)) .\right.
$$

Thus $\tau=\sigma(x)$ with $x=\lambda^{i}(\mu(\tau)) \in X_{i}(\mathbf{G})$.
Let $E \subset \tilde{M}$ be the fixed field of $\mu(G)$. Since $\mu(\mathbf{G})$ is a sub-e-structure of $\mathbf{G}(\mathbf{M})$, we get $\mu\left(X_{i}(\mathbf{G})\right)=\left\{\sigma_{i}^{\tau} \mid \tau \in \mu(G)\right\}$ for some involution $\sigma_{i} \in \mu(G)$ for which $\tilde{M}\left(\sigma_{i}\right)$ is a real closure of $\left(M, Q_{i}\right), i=1, \ldots, e$. Let $Q_{i}^{\prime}=E \cap \tilde{M}\left(\sigma_{i}\right)^{2}, i=1, \ldots, e$. Then $\mu(\mathbf{G})$ is identified with the absolute Galois $e$-structure of the $e$-field extension $\mathbf{E}=$ ( $E ; Q_{1}^{\prime}, \ldots, Q_{e}^{\prime}$ ) of $\mathbf{M}$. The remark above on the involutions of $G$ implies that there are only $e$ distinct orders on $E$, namely $Q_{1}^{\prime}, \ldots, Q_{e}^{\prime}$, extending respectively the orders $Q_{1}, \ldots, Q_{e}$ of the pre e-field $\mathbf{M}$. Since $E$ is algebraic over the prc field $M$ it follows by [17, Theorem 3.1] that $E$ is prc too, and so $\mathbf{E}$ is a prc $e$-field. Finally we get the commutative diagram


Obviously, $\left.\varphi\right|_{\mu(\mathbf{G})}$ is epi, i.e. $E \cap L=K$, as contended.
Remarks. (i) Taking in the statement above $L=\tilde{K}$ and $\psi: \mathbf{G} \rightarrow \mathbf{G ( K )}$ an epi, it follows that the prc $e$-field $\mathbf{E}$ from (i) is regular over $K$.
(ii) It follows from the proof above that for each involution $\tau$ of a projective profinite $e$-structure $\mathbf{G}$ there is $x \in \bigcup_{i=1}^{e} X_{i}(\mathbf{G})$ with $\tau=\sigma(x)$.

The second main result of the paper is an immediate consequence of (6.3).
6.4. Proof of Theorem II. Let $\mathbf{G}$ be a profinite $e$-structure. If $\mathbf{G} \cong \mathbf{G}(\mathbf{K}), \mathbf{K}$ a prc $e$ field, then $\mathbf{G}$ is projective by Theorem I. Conversely, assume $\mathbf{G}$ is projective, and let $K$ be an $e$-field and $L=K(\mathrm{i}), \mathrm{i}^{2}=-1$. Since $\mathbf{G}$ is projective, we get by (4.2) an epi $\psi: \mathbf{G} \rightarrow \mathbb{Z}_{2} \cong \mathbf{G}(L / K)$. Applying (6.3), we get a prc $e$-field $\mathbf{E}$ with $\mathbf{G}(\mathbf{E}) \cong \mathbf{G}$.

## References

[1] J. Ax, The elementary theory of finite fields, Annals of Math. 88 (1968) 239-271.
[2] §. Basarab, Definite functions on algebraic varieties over ordered fields, Revue Roumaine Math. Pures Appl. 29 (7) (1984) 527-535.
[3] §. Basarab, Some model theory for regularly closed fields, I, II, Report AI-FD018, Bucharest 1982.
[4] §. Basarab, The elementary theory of pseudo real closed e-fold ordered fields, Report AI-FD032, Bucharest 1983.
[5] Ş. Basarab, Profinite groups with involutions and pseudo real closed fields, Report AI-FD038, Bucharest 1983.
[6] J.L. Bell and A.B. Slomson, Models and Ultraproducts: An Introduction (North-Holland, Amsterdam, 1971).
[7] G. Cherlin, L. van den Dries and A. Macintyre, The elementary theory of regularly closed fields, Preprint.
[8] Ju. Ershov, Regularly closed fields, Soviet Math. Dokl. 21 (2)(1980) 510-512.
[9] Ju. Ershov, Regularly r-closed fields (Russian), Dokl. Akad. Nauk SSSR 266 (3) (1982) 538-540.
[10] G. Frey, Pseudo algebraically closed fields with nonarchimedean real valuations, J. Algebra 26 (1973) 202-207.
[11] M. Fried, D. Haran and M. Jarden, Galois stratification over Frobenius fields, Advances in Math., to appear.
[12] K. Gruenberg, Projective profinite groups, J. London Math. Soc. 42 (1967) 155-165.
[13] M. Jarden, The elementary theory of large e-fold ordered fields, Report 81-17, Tel-Aviv 1981.
[14] K. McKenna, Pseudo henselian and pseudo real closed fields, Thesis, Yale.
[15] K. McKenna, On the cohomology and elementary theory of a class of ordered fields, Preprint.
[16] A. Lubotzky and L. van den Dries, Subgroups of free profinite groups and large subfields of $\bar{Q}$, Israel J. Math. 39 (1981) 25-45.
[17] A. Prestel, Pseudo real closed fields, Lecture Notes in Math. 782 (Springer, Berlin, 1981) 127-156.
[18] J.P. Serre, Cohomologie Galoisienne, Lecture Notes in Math. 5 (Springer, Berlin, 1964).


[^0]:    * The present paper is the contents of §1-3, §9-10 of the report [4] earlier submitted as a whole for publication in J. Pure Appl. Algebra.

    The author thanks very much the referee for suggesting him a better organization of the paper and informing him about Ershov's note [9] announcing certain results which are similar with some results proved in §12-13 of [4].

